Macros allow you to send multiple keystrokes when pressing just one key. QMK has a number of ways to define and use macros. These can do anything you want: type common phrases for you, copypasta, repetitive game movements, or even help you code.
!> **Security Note**: While it is possible to use macros to send passwords, credit card numbers, and other sensitive information it is a supremely bad idea to do so. Anyone who gets a hold of your keyboard will be able to access that information by opening a text editor.
You can define up to 32 macros in a `keymap.json` file, as used by [Configurator](newbs_building_firmware_configurator.md), and `qmk compile`. You can define these macros in a list under the `macros` keyword, like this:
If you type in a language other than English, or use a non-QWERTY layout like Colemak, Dvorak, or Workman, you may have set your computer's input language to match this layout. This presents a challenge when creating macros- you may need to type different keys to get the same letters! To address this you can add the `host_language` key to your keymap.json, like so:
Each macro is an array consisting of strings and objects (dictionaries.) Strings are typed to your computer while objects allow you to control how your macro is typed out.
#### Object Format
All objects have one required key: `action`. This tells QMK what the object does. There are currently 5 actions: beep, delay, down, tap, up
Only basic keycodes (prefixed by `KC_`) are supported. Do not include the `KC_` prefix when listing keycodes.
*`beep`
* Play a bell if the keyboard has [audio enabled](feature_audio.md).
* Example: `{"action": "beep"}`
*`delay`
* Pause macro playback. Duration is specified in milliseconds (ms).
* Example: `{"action": "delay", "duration": 500}`
*`down`
* Send a key down event for one or more keycodes.
* Example, single key: `{"action":"down", "keycodes": ["LSFT"]}`
* Example, multiple keys: `{"action":"down", "keycodes": ["CTRL", "LSFT"]}`
*`tap`
* Type a chord, which sends a down event for each key followed by an up event for each key.
* Example, single key: `{"action":"tap", "keycodes": ["F13"]}`
* Example, multiple keys: `{"action":"tap", "keycodes": ["CTRL", "LALT", "DEL"]}`
*`up`
* Send a key up event for one or more keycodes.
* Example, single key: `{"action":"up", "keycodes": ["LSFT"]}`
* Example, multiple keys: `{"action":"up", "keycodes": ["CTRL", "LSFT"]}`
Sometimes you want a key to type out words or phrases. For the most common situations, we've provided `SEND_STRING()`, which will type out a string (i.e. a sequence of characters) for you. All ASCII characters that are easily translatable to a keycode are supported (e.g. `qmk 123\n\t`).
We first define a new custom keycode in the range not occupied by any other keycodes.
Then we use the `process_record_user` function, which is called whenever a key is pressed or released, to check if our custom keycode has been activated.
If yes, we send the string `"QMK is the best thing ever!"` to the computer via the `SEND_STRING` macro (this is a C preprocessor macro, not to be confused with QMK macros).
We return `true` to indicate to the caller that the key press we just processed should continue to be processed as normal (as we didn't replace or alter the functionality).
?> An enumerated list of custom keycodes (`enum custom_keycodes`) must be declared before `keymaps[]` array, `process_record_user()` and any other function that use the list for the compiler to recognise it.
In addition to the `process_record_user()` function, is the `post_process_record_user()` function. This runs after `process_record` and can be used to do things after a keystroke has been sent. This is useful if you want to have a key pressed before and released after a normal key, for instance.
In this example, we modify most normal keypresses so that `F22` is pressed before the keystroke is normally sent, and release it __only after__ it's been released.
By default, it assumes a US keymap with a QWERTY layout; if you want to change that (e.g. if your OS uses software Colemak), include this somewhere in your keymap:
If for some reason you're manipulating strings and need to print out something you just generated (instead of being a literal, constant string), you can use `send_string()`, like this:
There are some functions you may find useful in macro-writing. Keep in mind that while you can write some fairly advanced code within a macro, if your functionality gets too complex you may want to define a custom keycode instead. Macros are meant to be simple.
?> You can also use the functions described in [Useful function](ref_functions.md) and [Checking modifier state](feature_advanced_keycodes#checking-modifier-state) for additional functionality. For example, `reset_keyboard()` allows you to reset the keyboard as part of a macro and `get_mods() & MOD_MASK_SHIFT` lets you check for the existence of active shift modifiers.
This sends the `<kc>` keydown event to the computer. Some examples would be `KC_ESC`, `KC_C`, `KC_4`, and even modifiers such as `KC_LSFT` and `KC_LGUI`.
Parallel to `register_code` function, this sends the `<kc>` keyup event to the computer. If you don't use this, the key will be held down until it's sent.
Sends `register_code(<kc>)` and then `unregister_code(<kc>)`. This is useful if you want to send both the press and release events ("tap" the key, rather than hold it).
If `TAP_CODE_DELAY` is defined (default 0), this function waits that many milliseconds before calling `unregister_code(<kc>)`. This can be useful when you are having issues with taps (un)registering.
If the keycode is `KC_CAPS`, it waits `TAP_HOLD_CAPS_DELAY` milliseconds instead (default 80), as macOS prevents accidental Caps Lock activation by waiting for the key to be held for a certain amount of time.
These functions work similar to their regular counterparts, but allow you to use modded keycodes (with Shift, Alt, Control, and/or GUI applied to them).
Eg, you could use `register_code16(S(KC_5));` instead of registering the mod, then registering the keycode.
This macro will register `KC_LALT` and tap `KC_TAB`, then wait for 1000ms. If the key is tapped again, it will send another `KC_TAB`; if there is no tap, `KC_LALT` will be unregistered, thus allowing you to cycle through windows.