2020-08-22 19:59:24 +00:00
|
|
|
/*
|
|
|
|
Copyright 2013 Oleg Kostyuk <cub.uanic@gmail.com>
|
|
|
|
Copyright 2017 Erin Call <hello@erincall.com>
|
|
|
|
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <stdbool.h>
|
|
|
|
#include <avr/io.h>
|
|
|
|
#include "wait.h"
|
|
|
|
#include "action_layer.h"
|
|
|
|
#include "print.h"
|
|
|
|
#include "debug.h"
|
|
|
|
#include "util.h"
|
|
|
|
#include "matrix.h"
|
|
|
|
#include "pterodactyl.h"
|
|
|
|
#include "i2c_master.h"
|
|
|
|
#include "timer.h"
|
|
|
|
|
|
|
|
#define I2C_TIMEOUT 100
|
|
|
|
|
|
|
|
#define I2C_ADDR 0b0100000
|
|
|
|
#define I2C_ADDR_WRITE ( (I2C_ADDR<<1) | I2C_WRITE )
|
|
|
|
#define I2C_ADDR_READ ( (I2C_ADDR<<1) | I2C_READ )
|
|
|
|
#define IODIRA 0x00 // i/o direction register
|
|
|
|
#define IODIRB 0x01
|
|
|
|
#define GPPUA 0x0C // GPIO pull-up resistor register
|
|
|
|
#define GPPUB 0x0D
|
|
|
|
#define GPIOA 0x12 // general purpose i/o port register (write modifies OLAT)
|
|
|
|
#define GPIOB 0x13
|
|
|
|
|
|
|
|
void init_expander(void);
|
|
|
|
|
|
|
|
/* Set 0 if debouncing isn't needed */
|
|
|
|
|
|
|
|
#ifndef DEBOUNCE
|
|
|
|
# define DEBOUNCE 5
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if (DEBOUNCE > 0)
|
|
|
|
static uint16_t debouncing_time;
|
|
|
|
static bool debouncing = false;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef MATRIX_MASKED
|
|
|
|
extern const matrix_row_t matrix_mask[];
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if (DIODE_DIRECTION == ROW2COL) || (DIODE_DIRECTION == COL2ROW)
|
|
|
|
static const uint8_t onboard_row_pins[MATRIX_ROWS] = MATRIX_ONBOARD_ROW_PINS;
|
|
|
|
static const uint8_t onboard_col_pins[MATRIX_COLS] = MATRIX_ONBOARD_COL_PINS;
|
|
|
|
static const bool col_expanded[MATRIX_COLS] = COL_EXPANDED;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* matrix state(1:on, 0:off) */
|
|
|
|
static matrix_row_t matrix[MATRIX_ROWS];
|
|
|
|
|
|
|
|
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
|
|
|
|
|
|
|
|
#if (DIODE_DIRECTION == COL2ROW)
|
|
|
|
static const uint8_t expander_col_pins[MATRIX_COLS] = MATRIX_EXPANDER_COL_PINS;
|
|
|
|
static void init_cols(void);
|
|
|
|
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row);
|
|
|
|
static void unselect_rows(void);
|
|
|
|
static void select_row(uint8_t row);
|
|
|
|
static void unselect_row(uint8_t row);
|
|
|
|
#elif (DIODE_DIRECTION == ROW2COL)
|
|
|
|
static const uint8_t expander_row_pins[MATRIX_ROWS] = MATRIX_EXPANDER_ROW_PINS;
|
|
|
|
static void init_rows(void);
|
|
|
|
static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col);
|
|
|
|
static void unselect_cols(void);
|
|
|
|
static void select_col(uint8_t col);
|
|
|
|
static void unselect_col(uint8_t col);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static uint8_t expander_reset_loop;
|
|
|
|
uint8_t expander_status;
|
|
|
|
uint8_t expander_input_pin_mask;
|
|
|
|
bool i2c_initialized = false;
|
|
|
|
|
|
|
|
#define ROW_SHIFTER ((matrix_row_t)1)
|
|
|
|
|
|
|
|
__attribute__ ((weak))
|
|
|
|
void matrix_init_user(void) {}
|
|
|
|
|
|
|
|
__attribute__ ((weak))
|
|
|
|
void matrix_scan_user(void) {}
|
|
|
|
|
|
|
|
__attribute__ ((weak))
|
|
|
|
void matrix_init_kb(void) {
|
|
|
|
matrix_init_user();
|
|
|
|
}
|
|
|
|
|
|
|
|
__attribute__ ((weak))
|
|
|
|
void matrix_scan_kb(void) {
|
|
|
|
matrix_scan_user();
|
|
|
|
}
|
|
|
|
|
|
|
|
inline
|
|
|
|
uint8_t matrix_rows(void)
|
|
|
|
{
|
|
|
|
return MATRIX_ROWS;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline
|
|
|
|
uint8_t matrix_cols(void)
|
|
|
|
{
|
|
|
|
return MATRIX_COLS;
|
|
|
|
}
|
|
|
|
|
|
|
|
void matrix_init(void)
|
|
|
|
{
|
|
|
|
init_expander();
|
|
|
|
|
|
|
|
#if (DIODE_DIRECTION == COL2ROW)
|
|
|
|
unselect_rows();
|
|
|
|
init_cols();
|
|
|
|
#elif (DIODE_DIRECTION == ROW2COL)
|
|
|
|
unselect_cols();
|
|
|
|
init_rows();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// initialize matrix state: all keys off
|
|
|
|
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
|
|
|
|
matrix[i] = 0;
|
|
|
|
matrix_debouncing[i] = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
matrix_init_quantum();
|
|
|
|
}
|
|
|
|
|
|
|
|
void init_expander(void) {
|
|
|
|
if (! i2c_initialized) {
|
|
|
|
i2c_init();
|
2021-08-17 15:20:01 +00:00
|
|
|
wait_ms(1000);
|
2020-08-22 19:59:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (! expander_input_pin_mask) {
|
|
|
|
#if (DIODE_DIRECTION == COL2ROW)
|
|
|
|
for (int col = 0; col < MATRIX_COLS; col++) {
|
|
|
|
if (col_expanded[col]) {
|
|
|
|
expander_input_pin_mask |= (1 << expander_col_pins[col]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#elif (DIODE_DIRECTION == ROW2COL)
|
|
|
|
for (int row = 0; row < MATRIX_ROWS; row++) {
|
|
|
|
expander_input_pin_mask |= (1 << expander_row_pins[row]);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
expander_status = i2c_start(I2C_ADDR_WRITE, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
expander_status = i2c_write(IODIRA, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
|
|
|
|
/*
|
|
|
|
Pin direction and pull-up depends on both the diode direction
|
|
|
|
and on whether the column register is GPIOA or GPIOB
|
|
|
|
+-------+---------------+---------------+
|
|
|
|
| | ROW2COL | COL2ROW |
|
|
|
|
+-------+---------------+---------------+
|
|
|
|
| GPIOA | input, output | output, input |
|
|
|
|
+-------+---------------+---------------+
|
|
|
|
| GPIOB | output, input | input, output |
|
|
|
|
+-------+---------------+---------------+
|
|
|
|
*/
|
|
|
|
|
|
|
|
#if (EXPANDER_COL_REGISTER == GPIOA)
|
|
|
|
# if (DIODE_DIRECTION == COL2ROW)
|
|
|
|
expander_status = i2c_write(expander_input_pin_mask, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
expander_status = i2c_write(0, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
# elif (DIODE_DIRECTION == ROW2COL)
|
|
|
|
expander_status = i2c_write(0, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
expander_status = i2c_write(expander_input_pin_mask, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
# endif
|
|
|
|
#elif (EXPANDER_COL_REGISTER == GPIOB)
|
|
|
|
# if (DIODE_DIRECTION == COL2ROW)
|
|
|
|
expander_status = i2c_write(0, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
expander_status = i2c_write(expander_input_pin_mask, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
# elif (DIODE_DIRECTION == ROW2COL)
|
|
|
|
expander_status = i2c_write(expander_input_pin_mask, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
expander_status = i2c_write(0, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
# endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
i2c_stop();
|
|
|
|
|
|
|
|
// set pull-up
|
|
|
|
// - unused : off : 0
|
|
|
|
// - input : on : 1
|
|
|
|
// - driving : off : 0
|
|
|
|
expander_status = i2c_start(I2C_ADDR_WRITE, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
expander_status = i2c_write(GPPUA, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
#if (EXPANDER_COL_REGISTER == GPIOA)
|
|
|
|
# if (DIODE_DIRECTION == COL2ROW)
|
|
|
|
expander_status = i2c_write(expander_input_pin_mask, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
expander_status = i2c_write(0, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
# elif (DIODE_DIRECTION == ROW2COL)
|
|
|
|
expander_status = i2c_write(0, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
expander_status = i2c_write(expander_input_pin_mask, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
# endif
|
|
|
|
#elif (EXPANDER_COL_REGISTER == GPIOB)
|
|
|
|
# if (DIODE_DIRECTION == COL2ROW)
|
|
|
|
expander_status = i2c_write(0, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
expander_status = i2c_write(expander_input_pin_mask, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
# elif (DIODE_DIRECTION == ROW2COL)
|
|
|
|
expander_status = i2c_write(expander_input_pin_mask, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
expander_status = i2c_write(0, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
# endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
out:
|
|
|
|
i2c_stop();
|
|
|
|
}
|
|
|
|
|
|
|
|
uint8_t matrix_scan(void)
|
|
|
|
{
|
|
|
|
if (expander_status) { // if there was an error
|
|
|
|
if (++expander_reset_loop == 0) {
|
|
|
|
// since expander_reset_loop is 8 bit - we'll try to reset once in 255 matrix scans
|
|
|
|
// this will be approx bit more frequent than once per second
|
|
|
|
print("trying to reset expander\n");
|
|
|
|
init_expander();
|
|
|
|
if (expander_status) {
|
|
|
|
print("left side not responding\n");
|
|
|
|
} else {
|
|
|
|
print("left side attached\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#if (DIODE_DIRECTION == COL2ROW)
|
|
|
|
for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
|
|
|
|
# if (DEBOUNCE > 0)
|
|
|
|
bool matrix_changed = read_cols_on_row(matrix_debouncing, current_row);
|
|
|
|
|
|
|
|
if (matrix_changed) {
|
|
|
|
debouncing = true;
|
|
|
|
debouncing_time = timer_read();
|
|
|
|
}
|
|
|
|
# else
|
|
|
|
read_cols_on_row(matrix, current_row);
|
|
|
|
# endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#elif (DIODE_DIRECTION == ROW2COL)
|
|
|
|
for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
|
|
|
|
# if (DEBOUNCE > 0)
|
|
|
|
bool matrix_changed = read_rows_on_col(matrix_debouncing, current_col);
|
|
|
|
|
|
|
|
if (matrix_changed) {
|
|
|
|
debouncing = true;
|
|
|
|
debouncing_time = timer_read();
|
|
|
|
}
|
|
|
|
# else
|
|
|
|
read_rows_on_col(matrix, current_col);
|
|
|
|
# endif
|
|
|
|
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
# if (DEBOUNCE > 0)
|
|
|
|
if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCE)) {
|
|
|
|
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
|
|
|
|
matrix[i] = matrix_debouncing[i];
|
|
|
|
}
|
|
|
|
debouncing = false;
|
|
|
|
}
|
|
|
|
# endif
|
|
|
|
|
|
|
|
matrix_scan_quantum();
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline
|
|
|
|
bool matrix_is_on(uint8_t row, uint8_t col)
|
|
|
|
{
|
|
|
|
return (matrix[row] & (ROW_SHIFTER << col));
|
|
|
|
}
|
|
|
|
|
|
|
|
inline
|
|
|
|
matrix_row_t matrix_get_row(uint8_t row)
|
|
|
|
{
|
|
|
|
#ifdef MATRIX_MASKED
|
|
|
|
return matrix[row] & matrix_mask[row];
|
|
|
|
#else
|
|
|
|
return matrix[row];
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void matrix_print(void)
|
|
|
|
{
|
|
|
|
print("\nr/c 0123456789ABCDEF\n");
|
|
|
|
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
|
2021-02-06 16:56:13 +00:00
|
|
|
print_hex8(row); print(": ");
|
|
|
|
print_bin_reverse16(matrix_get_row(row));
|
2020-08-22 19:59:24 +00:00
|
|
|
print("\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#if (DIODE_DIRECTION == COL2ROW)
|
|
|
|
|
|
|
|
static void init_cols(void) {
|
|
|
|
for (uint8_t x = 0; x < MATRIX_COLS; x++) {
|
|
|
|
if (! col_expanded[x]) {
|
|
|
|
uint8_t pin = onboard_col_pins[x];
|
|
|
|
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
|
|
|
|
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) {
|
|
|
|
// Store last value of row prior to reading
|
|
|
|
matrix_row_t last_row_value = current_matrix[current_row];
|
|
|
|
|
|
|
|
// Clear data in matrix row
|
|
|
|
current_matrix[current_row] = 0;
|
|
|
|
|
|
|
|
// Select row and wait for row selection to stabilize
|
|
|
|
select_row(current_row);
|
|
|
|
wait_us(30);
|
|
|
|
|
|
|
|
// Read columns from expander, unless it's in an error state
|
|
|
|
if (! expander_status) {
|
|
|
|
expander_status = i2c_start(I2C_ADDR_WRITE, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
expander_status = i2c_write(EXPANDER_COL_REGISTER, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
expander_status = i2c_start(I2C_ADDR_READ, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
|
|
|
|
current_matrix[current_row] |= (~i2c_read_nack(I2C_TIMEOUT)) & expander_input_pin_mask;
|
|
|
|
|
|
|
|
out:
|
|
|
|
i2c_stop();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Read columns from onboard pins
|
|
|
|
for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
|
|
|
|
if (! col_expanded[col_index]) {
|
|
|
|
uint8_t pin = onboard_col_pins[col_index];
|
|
|
|
uint8_t pin_state = (_SFR_IO8(pin >> 4) & _BV(pin & 0xF));
|
|
|
|
current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
unselect_row(current_row);
|
|
|
|
|
|
|
|
return (last_row_value != current_matrix[current_row]);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void select_row(uint8_t row) {
|
|
|
|
// select on expander, unless it's in an error state
|
|
|
|
if (! expander_status) {
|
|
|
|
// set active row low : 0
|
|
|
|
// set other rows hi-Z : 1
|
|
|
|
expander_status = i2c_start(I2C_ADDR_WRITE, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
expander_status = i2c_write(EXPANDER_ROW_REGISTER, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
expander_status = i2c_write(0xFF & ~(1<<row), I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
out:
|
|
|
|
i2c_stop();
|
|
|
|
}
|
|
|
|
|
|
|
|
// select on teensy
|
|
|
|
uint8_t pin = onboard_row_pins[row];
|
|
|
|
_SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
|
|
|
|
_SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
|
|
|
|
}
|
|
|
|
|
|
|
|
static void unselect_row(uint8_t row)
|
|
|
|
{
|
|
|
|
// No need to explicitly unselect expander pins--their I/O state is
|
|
|
|
// set simultaneously, with a single bitmask sent to i2c_write. When
|
|
|
|
// select_row selects a single pin, it implicitly unselects all the
|
|
|
|
// other ones.
|
|
|
|
|
|
|
|
// unselect on teensy
|
|
|
|
uint8_t pin = onboard_row_pins[row];
|
|
|
|
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // OUT
|
|
|
|
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // LOW
|
|
|
|
}
|
|
|
|
|
|
|
|
static void unselect_rows(void) {
|
|
|
|
for (uint8_t x = 0; x < MATRIX_ROWS; x++) {
|
|
|
|
unselect_row(x);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#elif (DIODE_DIRECTION == ROW2COL)
|
|
|
|
|
|
|
|
static void init_rows(void)
|
|
|
|
{
|
|
|
|
for (uint8_t x = 0; x < MATRIX_ROWS; x++) {
|
|
|
|
uint8_t pin = onboard_row_pins[x];
|
|
|
|
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
|
|
|
|
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col)
|
|
|
|
{
|
|
|
|
bool matrix_changed = false;
|
|
|
|
|
|
|
|
uint8_t column_state = 0;
|
|
|
|
|
|
|
|
//select col and wait for selection to stabilize
|
|
|
|
select_col(current_col);
|
|
|
|
wait_us(30);
|
|
|
|
|
|
|
|
if (current_col < 6) {
|
|
|
|
// read rows from expander
|
|
|
|
if (expander_status) {
|
|
|
|
// it's already in an error state; nothing we can do
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
expander_status = i2c_start(I2C_ADDR_WRITE, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
expander_status = i2c_write(EXPANDER_ROW_REGISTER, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
expander_status = i2c_start(I2C_ADDR_READ, I2C_TIMEOUT); if (expander_status) goto out;
|
|
|
|
column_state = i2c_read_nack(I2C_TIMEOUT);
|
|
|
|
|
|
|
|
out:
|
|
|
|
i2c_stop();
|
|
|
|
|
|
|
|
column_state = ~column_state;
|
|
|
|
} else {
|
|
|
|
for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
|
|
|
|
if ((_SFR_IO8(onboard_row_pins[current_row] >> 4) & _BV(onboard_row_pins[current_row] & 0xF)) == 0) {
|
|
|
|
column_state |= (1 << current_row);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
|
|
|
|
// Store last value of row prior to reading
|
|
|
|
matrix_row_t last_row_value = current_matrix[current_row];
|
|
|
|
|
|
|
|
if (column_state & (1 << current_row)) {
|
|
|
|
// key closed; set state bit in matrix
|
|
|
|
current_matrix[current_row] |= (ROW_SHIFTER << current_col);
|
|
|
|
} else {
|
|
|
|
// key open; clear state bit in matrix
|
|
|
|
current_matrix[current_row] &= ~(ROW_SHIFTER << current_col);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Determine whether the matrix changed state
|
|
|
|
if ((last_row_value != current_matrix[current_row]) && !(matrix_changed))
|
|
|
|
{
|
|
|
|
matrix_changed = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
unselect_col(current_col);
|
|
|
|
|
|
|
|
return matrix_changed;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void select_col(uint8_t col)
|
|
|
|
{
|
|
|
|
if (col_expanded[col]) {
|
|
|
|
// select on expander
|
|
|
|
if (expander_status) { // if there was an error
|
|
|
|
// do nothing
|
|
|
|
} else {
|
|
|
|
// set active col low : 0
|
|
|
|
// set other cols hi-Z : 1
|
|
|
|
expander_status = i2c_start(I2C_ADDR_WRITE); if (expander_status) goto out;
|
|
|
|
expander_status = i2c_write(EXPANDER_COL_REGISTER); if (expander_status) goto out;
|
|
|
|
expander_status = i2c_write(0xFF & ~(1<<col)); if (expander_status) goto out;
|
|
|
|
out:
|
|
|
|
i2c_stop();
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// select on teensy
|
|
|
|
uint8_t pin = onboard_col_pins[col];
|
|
|
|
_SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
|
|
|
|
_SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void unselect_col(uint8_t col)
|
|
|
|
{
|
|
|
|
if (col_expanded[col]) {
|
|
|
|
// No need to explicitly unselect expander pins--their I/O state is
|
|
|
|
// set simultaneously, with a single bitmask sent to i2c_write. When
|
|
|
|
// select_col selects a single pin, it implicitly unselects all the
|
|
|
|
// other ones.
|
|
|
|
} else {
|
|
|
|
// unselect on teensy
|
|
|
|
uint8_t pin = onboard_col_pins[col];
|
|
|
|
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
|
|
|
|
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void unselect_cols(void)
|
|
|
|
{
|
|
|
|
for(uint8_t x = 0; x < MATRIX_COLS; x++) {
|
|
|
|
unselect_col(x);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|