1
0
Fork 0

Adds IS31FL3731 RGB Matrix Implementation (#2910)

* adds is31fl3731 rgb matrix implementation

* fix build script for force pushes

* allow bootloader size to be overwritten

* adds planck light implementation

* split led config into 2 arrays

* idk

* betterize register handling

* update planck implementation

* update planck

* refine rgb interface

* cleanup names, rgb matrix

* start documentation

* finish up docs

* add effects list

* clean-up merge

* add RGB_MATRIX_SKIP_FRAMES

* add support for at90usb1286 to bootloader options
This commit is contained in:
Jack Humbert 2018-05-08 15:24:18 -04:00 committed by GitHub
parent 46dca121fd
commit 14b7602a65
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
19 changed files with 2336 additions and 19 deletions

View file

@ -32,17 +32,32 @@
ifeq ($(strip $(BOOTLOADER)), atmel-dfu)
OPT_DEFS += -DBOOTLOADER_ATMEL_DFU
OPT_DEFS += -DBOOTLOADER_DFU
BOOTLOADER_SIZE = 4096
ifeq ($(strip $(MCU)), atmega32u4)
BOOTLOADER_SIZE = 4096
endif
ifeq ($(strip $(MCU)), at90usb1286)
BOOTLOADER_SIZE = 8192
endif
endif
ifeq ($(strip $(BOOTLOADER)), lufa-dfu)
OPT_DEFS += -DBOOTLOADER_LUFA_DFU
OPT_DEFS += -DBOOTLOADER_DFU
BOOTLOADER_SIZE = 4096
ifeq ($(strip $(MCU)), atmega32u4)
BOOTLOADER_SIZE = 4096
endif
ifeq ($(strip $(MCU)), at90usb1286)
BOOTLOADER_SIZE = 8192
endif
endif
ifeq ($(strip $(BOOTLOADER)), qmk-dfu)
OPT_DEFS += -DBOOTLOADER_QMK_DFU
OPT_DEFS += -DBOOTLOADER_DFU
BOOTLOADER_SIZE = 4096
ifeq ($(strip $(MCU)), atmega32u4)
BOOTLOADER_SIZE = 4096
endif
ifeq ($(strip $(MCU)), at90usb1286)
BOOTLOADER_SIZE = 8192
endif
endif
ifeq ($(strip $(BOOTLOADER)), halfkay)
OPT_DEFS += -DBOOTLOADER_HALFKAY
@ -59,4 +74,4 @@ endif
ifdef BOOTLOADER_SIZE
OPT_DEFS += -DBOOTLOADER_SIZE=$(strip $(BOOTLOADER_SIZE))
endif
endif

View file

@ -114,6 +114,15 @@ ifeq ($(strip $(RGBLIGHT_ENABLE)), yes)
endif
endif
ifeq ($(strip $(RGB_MATRIX_ENABLE)), yes)
OPT_DEFS += -DRGB_MATRIX_ENABLE
SRC += is31fl3731.c
SRC += TWIlib.c
SRC += $(QUANTUM_DIR)/color.c
SRC += $(QUANTUM_DIR)/rgb_matrix.c
CIE1931_CURVE = yes
endif
ifeq ($(strip $(TAP_DANCE_ENABLE)), yes)
OPT_DEFS += -DTAP_DANCE_ENABLE
SRC += $(QUANTUM_DIR)/process_keycode/process_tap_dance.c

141
docs/feature_rgb_matrix.md Normal file
View file

@ -0,0 +1,141 @@
# RGB Matrix Lighting
There is basic support for addressable RGB matrix lighting with the I2C IS31FL3731 RGB controller. To enable it, add this to your `rules.mk`:
RGB_MATRIX_ENABLE = yes
Configure the hardware via your `config.h`:
// This is a 7-bit address, that gets left-shifted and bit 0
// set to 0 for write, 1 for read (as per I2C protocol)
// The address will vary depending on your wiring:
// 0b1110100 AD <-> GND
// 0b1110111 AD <-> VCC
// 0b1110101 AD <-> SCL
// 0b1110110 AD <-> SDA
#define DRIVER_ADDR_1 0b1110100
#define DRIVER_ADDR_2 0b1110110
#define DRIVER_COUNT 2
#define DRIVER_1_LED_TOTAL 25
#define DRIVER_2_LED_TOTAL 24
#define DRIVER_LED_TOTAL DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL
Currently only 2 drivers are supported, but it would be trivial to support all 4 combinations.
Define these arrays listing all the LEDs in your `<keyboard>.c`:
const is31_led g_is31_leds[DRIVER_LED_TOTAL] = {
/* Refer to IS31 manual for these locations
* driver
* | R location
* | | G location
* | | | B location
* | | | | */
{0, C1_3, C2_3, C3_3},
....
}
Where `Cx_y` is the location of the LED in the matrix defined by [the datasheet](http://www.issi.com/WW/pdf/31FL3731.pdf). The `driver` is the index of the driver you defined in your `config.h` (`0` or `1` right now).
const rgb_led g_rgb_leds[DRIVER_LED_TOTAL] = {
/* {row | col << 4}
* | {x=0..224, y=0..64}
* | | modifier
* | | | */
{{0|(0<<4)}, {20.36*0, 21.33*0}, 1},
{{0|(1<<4)}, {20.36*1, 21.33*0}, 1},
....
}
The format for the matrix position used in this array is `{row | (col << 4)}`. The `x` is between (inclusive) 0-224, and `y` is between (inclusive) 0-64. The easiest way to calculate these positions is:
x = 224 / ( NUMBER_OF_ROWS - 1 ) * ROW_POSITION
y = 64 / (NUMBER_OF_COLS - 1 ) * COL_POSITION
Where all variables are decimels/floats.
`modifier` is a boolean, whether or not a certain key is considered a modifier (used in some effects).
## Keycodes
All RGB keycodes are currently shared with the RGBLIGHT system:
* `RGB_TOG` - toggle
* `RGB_MOD` - cycle through modes
* `RGB_HUI` - increase hue
* `RGB_HUD` - decrease hue
* `RGB_SAI` - increase saturation
* `RGB_SAD` - decrease saturation
* `RGB_VAI` - increase value
* `RGB_VAD` - decrease value
* `RGB_MODE_*` keycodes will generally work, but are not currently mapped to the correct effects for the RGB Matrix system
## RGB Matrix Effects
These are the effects that are currently available:
enum rgb_matrix_effects {
RGB_MATRIX_SOLID_COLOR = 1,
RGB_MATRIX_SOLID_REACTIVE,
RGB_MATRIX_ALPHAS_MODS,
RGB_MATRIX_DUAL_BEACON,
RGB_MATRIX_GRADIENT_UP_DOWN,
RGB_MATRIX_RAINDROPS,
RGB_MATRIX_CYCLE_ALL,
RGB_MATRIX_CYCLE_LEFT_RIGHT,
RGB_MATRIX_CYCLE_UP_DOWN,
RGB_MATRIX_RAINBOW_BEACON,
RGB_MATRIX_RAINBOW_PINWHEELS,
RGB_MATRIX_RAINBOW_MOVING_CHEVRON,
RGB_MATRIX_JELLYBEAN_RAINDROPS,
#ifdef RGB_MATRIX_KEYPRESSES
RGB_MATRIX_SPLASH,
RGB_MATRIX_MULTISPLASH,
RGB_MATRIX_SOLID_SPLASH,
RGB_MATRIX_SOLID_MULTISPLASH,
#endif
RGB_MATRIX_EFFECT_MAX
};
## Custom layer effects
Custom layer effects can be done by defining this in your `<keyboard>.c`:
void rgb_matrix_indicators_kb(void) {
// rgb_matrix_set_color(index, red, green, blue);
}
A similar function works in the keymap as `rgb_matrix_indicators_user`.
## Additional `config.h` Options
#define RGB_MATRIX_KEYPRESSES // reacts to keypresses (will slow down matrix scan by a lot)
#define RGB_MATRIX_KEYRELEASES // reacts to keyreleases (not recommened)
#define RGB_DISABLE_AFTER_TIMEOUT 0 // number of ticks to wait until disabling effects
#define RGB_DISABLE_WHEN_USB_SUSPENDED false // turn off effects when suspended
#define RGB_MATRIX_SKIP_FRAMES 1 // number of frames to skip when displaying animations (0 is full effect)
## EEPROM storage
The EEPROM for it is currently shared with the RGBLIGHT system (it's generally assumed only one RGB would be used at a time), but could be configured to use its own 32bit address with:
#define EECONFIG_RGB_MATRIX (uint32_t *)16
Where `16` is an unused index from `eeconfig.h`.
## Suspended state
To use the suspend feature, add this to your `<keyboard>.c`:
void suspend_power_down_kb(void)
{
rgb_matrix_set_suspend_state(true);
}
void suspend_wakeup_init_kb(void)
{
rgb_matrix_set_suspend_state(false);
}

232
drivers/avr/TWIlib.c Normal file
View file

@ -0,0 +1,232 @@
/*
* TWIlib.c
*
* Created: 6/01/2014 10:41:33 PM
* Author: Chris Herring
* http://www.chrisherring.net/all/tutorial-interrupt-driven-twi-interface-for-avr-part1/
*/
#include <avr/io.h>
#include <avr/interrupt.h>
#include "TWIlib.h"
#include "util/delay.h"
void TWIInit()
{
TWIInfo.mode = Ready;
TWIInfo.errorCode = 0xFF;
TWIInfo.repStart = 0;
// Set pre-scalers (no pre-scaling)
TWSR = 0;
// Set bit rate
TWBR = ((F_CPU / TWI_FREQ) - 16) / 2;
// Enable TWI and interrupt
TWCR = (1 << TWIE) | (1 << TWEN);
}
uint8_t isTWIReady()
{
if ( (TWIInfo.mode == Ready) | (TWIInfo.mode == RepeatedStartSent) )
{
return 1;
}
else
{
return 0;
}
}
uint8_t TWITransmitData(void *const TXdata, uint8_t dataLen, uint8_t repStart)
{
if (dataLen <= TXMAXBUFLEN)
{
// Wait until ready
while (!isTWIReady()) {_delay_us(1);}
// Set repeated start mode
TWIInfo.repStart = repStart;
// Copy data into the transmit buffer
uint8_t *data = (uint8_t *)TXdata;
for (int i = 0; i < dataLen; i++)
{
TWITransmitBuffer[i] = data[i];
}
// Copy transmit info to global variables
TXBuffLen = dataLen;
TXBuffIndex = 0;
// If a repeated start has been sent, then devices are already listening for an address
// and another start does not need to be sent.
if (TWIInfo.mode == RepeatedStartSent)
{
TWIInfo.mode = Initializing;
TWDR = TWITransmitBuffer[TXBuffIndex++]; // Load data to transmit buffer
TWISendTransmit(); // Send the data
}
else // Otherwise, just send the normal start signal to begin transmission.
{
TWIInfo.mode = Initializing;
TWISendStart();
}
}
else
{
return 1; // return an error if data length is longer than buffer
}
return 0;
}
uint8_t TWIReadData(uint8_t TWIaddr, uint8_t bytesToRead, uint8_t repStart)
{
// Check if number of bytes to read can fit in the RXbuffer
if (bytesToRead < RXMAXBUFLEN)
{
// Reset buffer index and set RXBuffLen to the number of bytes to read
RXBuffIndex = 0;
RXBuffLen = bytesToRead;
// Create the one value array for the address to be transmitted
uint8_t TXdata[1];
// Shift the address and AND a 1 into the read write bit (set to write mode)
TXdata[0] = (TWIaddr << 1) | 0x01;
// Use the TWITransmitData function to initialize the transfer and address the slave
TWITransmitData(TXdata, 1, repStart);
}
else
{
return 0;
}
return 1;
}
ISR (TWI_vect)
{
switch (TWI_STATUS)
{
// ----\/ ---- MASTER TRANSMITTER OR WRITING ADDRESS ----\/ ---- //
case TWI_MT_SLAW_ACK: // SLA+W transmitted and ACK received
// Set mode to Master Transmitter
TWIInfo.mode = MasterTransmitter;
case TWI_START_SENT: // Start condition has been transmitted
case TWI_MT_DATA_ACK: // Data byte has been transmitted, ACK received
if (TXBuffIndex < TXBuffLen) // If there is more data to send
{
TWDR = TWITransmitBuffer[TXBuffIndex++]; // Load data to transmit buffer
TWIInfo.errorCode = TWI_NO_RELEVANT_INFO;
TWISendTransmit(); // Send the data
}
// This transmission is complete however do not release bus yet
else if (TWIInfo.repStart)
{
TWIInfo.errorCode = 0xFF;
TWISendStart();
}
// All transmissions are complete, exit
else
{
TWIInfo.mode = Ready;
TWIInfo.errorCode = 0xFF;
TWISendStop();
}
break;
// ----\/ ---- MASTER RECEIVER ----\/ ---- //
case TWI_MR_SLAR_ACK: // SLA+R has been transmitted, ACK has been received
// Switch to Master Receiver mode
TWIInfo.mode = MasterReceiver;
// If there is more than one byte to be read, receive data byte and return an ACK
if (RXBuffIndex < RXBuffLen-1)
{
TWIInfo.errorCode = TWI_NO_RELEVANT_INFO;
TWISendACK();
}
// Otherwise when a data byte (the only data byte) is received, return NACK
else
{
TWIInfo.errorCode = TWI_NO_RELEVANT_INFO;
TWISendNACK();
}
break;
case TWI_MR_DATA_ACK: // Data has been received, ACK has been transmitted.
/// -- HANDLE DATA BYTE --- ///
TWIReceiveBuffer[RXBuffIndex++] = TWDR;
// If there is more than one byte to be read, receive data byte and return an ACK
if (RXBuffIndex < RXBuffLen-1)
{
TWIInfo.errorCode = TWI_NO_RELEVANT_INFO;
TWISendACK();
}
// Otherwise when a data byte (the only data byte) is received, return NACK
else
{
TWIInfo.errorCode = TWI_NO_RELEVANT_INFO;
TWISendNACK();
}
break;
case TWI_MR_DATA_NACK: // Data byte has been received, NACK has been transmitted. End of transmission.
/// -- HANDLE DATA BYTE --- ///
TWIReceiveBuffer[RXBuffIndex++] = TWDR;
// This transmission is complete however do not release bus yet
if (TWIInfo.repStart)
{
TWIInfo.errorCode = 0xFF;
TWISendStart();
}
// All transmissions are complete, exit
else
{
TWIInfo.mode = Ready;
TWIInfo.errorCode = 0xFF;
TWISendStop();
}
break;
// ----\/ ---- MT and MR common ----\/ ---- //
case TWI_MR_SLAR_NACK: // SLA+R transmitted, NACK received
case TWI_MT_SLAW_NACK: // SLA+W transmitted, NACK received
case TWI_MT_DATA_NACK: // Data byte has been transmitted, NACK received
case TWI_LOST_ARBIT: // Arbitration has been lost
// Return error and send stop and set mode to ready
if (TWIInfo.repStart)
{
TWIInfo.errorCode = TWI_STATUS;
TWISendStart();
}
// All transmissions are complete, exit
else
{
TWIInfo.mode = Ready;
TWIInfo.errorCode = TWI_STATUS;
TWISendStop();
}
break;
case TWI_REP_START_SENT: // Repeated start has been transmitted
// Set the mode but DO NOT clear TWINT as the next data is not yet ready
TWIInfo.mode = RepeatedStartSent;
break;
// ----\/ ---- SLAVE RECEIVER ----\/ ---- //
// TODO IMPLEMENT SLAVE RECEIVER FUNCTIONALITY
// ----\/ ---- SLAVE TRANSMITTER ----\/ ---- //
// TODO IMPLEMENT SLAVE TRANSMITTER FUNCTIONALITY
// ----\/ ---- MISCELLANEOUS STATES ----\/ ---- //
case TWI_NO_RELEVANT_INFO: // It is not really possible to get into this ISR on this condition
// Rather, it is there to be manually set between operations
break;
case TWI_ILLEGAL_START_STOP: // Illegal START/STOP, abort and return error
TWIInfo.errorCode = TWI_ILLEGAL_START_STOP;
TWIInfo.mode = Ready;
TWISendStop();
break;
}
}

82
drivers/avr/TWIlib.h Normal file
View file

@ -0,0 +1,82 @@
/*
* TWIlib.h
*
* Created: 6/01/2014 10:38:42 PM
* Author: Chris Herring
* http://www.chrisherring.net/all/tutorial-interrupt-driven-twi-interface-for-avr-part1/
*/
#ifndef TWILIB_H_
#define TWILIB_H_
// TWI bit rate (was 100000)
#define TWI_FREQ 400000
// Get TWI status
#define TWI_STATUS (TWSR & 0xF8)
// Transmit buffer length
#define TXMAXBUFLEN 20
// Receive buffer length
#define RXMAXBUFLEN 20
// Global transmit buffer
uint8_t TWITransmitBuffer[TXMAXBUFLEN];
// Global receive buffer
volatile uint8_t TWIReceiveBuffer[RXMAXBUFLEN];
// Buffer indexes
volatile int TXBuffIndex; // Index of the transmit buffer. Is volatile, can change at any time.
int RXBuffIndex; // Current index in the receive buffer
// Buffer lengths
int TXBuffLen; // The total length of the transmit buffer
int RXBuffLen; // The total number of bytes to read (should be less than RXMAXBUFFLEN)
typedef enum {
Ready,
Initializing,
RepeatedStartSent,
MasterTransmitter,
MasterReceiver,
SlaceTransmitter,
SlaveReciever
} TWIMode;
typedef struct TWIInfoStruct{
TWIMode mode;
uint8_t errorCode;
uint8_t repStart;
}TWIInfoStruct;
TWIInfoStruct TWIInfo;
// TWI Status Codes
#define TWI_START_SENT 0x08 // Start sent
#define TWI_REP_START_SENT 0x10 // Repeated Start sent
// Master Transmitter Mode
#define TWI_MT_SLAW_ACK 0x18 // SLA+W sent and ACK received
#define TWI_MT_SLAW_NACK 0x20 // SLA+W sent and NACK received
#define TWI_MT_DATA_ACK 0x28 // DATA sent and ACK received
#define TWI_MT_DATA_NACK 0x30 // DATA sent and NACK received
// Master Receiver Mode
#define TWI_MR_SLAR_ACK 0x40 // SLA+R sent, ACK received
#define TWI_MR_SLAR_NACK 0x48 // SLA+R sent, NACK received
#define TWI_MR_DATA_ACK 0x50 // Data received, ACK returned
#define TWI_MR_DATA_NACK 0x58 // Data received, NACK returned
// Miscellaneous States
#define TWI_LOST_ARBIT 0x38 // Arbitration has been lost
#define TWI_NO_RELEVANT_INFO 0xF8 // No relevant information available
#define TWI_ILLEGAL_START_STOP 0x00 // Illegal START or STOP condition has been detected
#define TWI_SUCCESS 0xFF // Successful transfer, this state is impossible from TWSR as bit2 is 0 and read only
#define TWISendStart() (TWCR = (1<<TWINT)|(1<<TWSTA)|(1<<TWEN)|(1<<TWIE)) // Send the START signal, enable interrupts and TWI, clear TWINT flag to resume transfer.
#define TWISendStop() (TWCR = (1<<TWINT)|(1<<TWSTO)|(1<<TWEN)|(1<<TWIE)) // Send the STOP signal, enable interrupts and TWI, clear TWINT flag.
#define TWISendTransmit() (TWCR = (1<<TWINT)|(1<<TWEN)|(1<<TWIE)) // Used to resume a transfer, clear TWINT and ensure that TWI and interrupts are enabled.
#define TWISendACK() (TWCR = (1<<TWINT)|(1<<TWEN)|(1<<TWIE)|(1<<TWEA)) // FOR MR mode. Resume a transfer, ensure that TWI and interrupts are enabled and respond with an ACK if the device is addressed as a slave or after it receives a byte.
#define TWISendNACK() (TWCR = (1<<TWINT)|(1<<TWEN)|(1<<TWIE)) // FOR MR mode. Resume a transfer, ensure that TWI and interrupts are enabled but DO NOT respond with an ACK if the device is addressed as a slave or after it receives a byte.
// Function declarations
uint8_t TWITransmitData(void *const TXdata, uint8_t dataLen, uint8_t repStart);
void TWIInit(void);
uint8_t TWIReadData(uint8_t TWIaddr, uint8_t bytesToRead, uint8_t repStart);
uint8_t isTWIReady(void);
#endif // TWICOMMS_H_

258
drivers/avr/is31fl3731.c Normal file
View file

@ -0,0 +1,258 @@
/* Copyright 2017 Jason Williams
* Copyright 2018 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "is31fl3731.h"
#include <avr/interrupt.h>
#include <avr/io.h>
#include <util/delay.h>
#include <string.h>
#include "TWIlib.h"
#include "progmem.h"
// This is a 7-bit address, that gets left-shifted and bit 0
// set to 0 for write, 1 for read (as per I2C protocol)
// The address will vary depending on your wiring:
// 0b1110100 AD <-> GND
// 0b1110111 AD <-> VCC
// 0b1110101 AD <-> SCL
// 0b1110110 AD <-> SDA
#define ISSI_ADDR_DEFAULT 0x74
#define ISSI_REG_CONFIG 0x00
#define ISSI_REG_CONFIG_PICTUREMODE 0x00
#define ISSI_REG_CONFIG_AUTOPLAYMODE 0x08
#define ISSI_REG_CONFIG_AUDIOPLAYMODE 0x18
#define ISSI_CONF_PICTUREMODE 0x00
#define ISSI_CONF_AUTOFRAMEMODE 0x04
#define ISSI_CONF_AUDIOMODE 0x08
#define ISSI_REG_PICTUREFRAME 0x01
#define ISSI_REG_SHUTDOWN 0x0A
#define ISSI_REG_AUDIOSYNC 0x06
#define ISSI_COMMANDREGISTER 0xFD
#define ISSI_BANK_FUNCTIONREG 0x0B // helpfully called 'page nine'
// Transfer buffer for TWITransmitData()
uint8_t g_twi_transfer_buffer[TXMAXBUFLEN];
// These buffers match the IS31FL3731 PWM registers 0x24-0xB3.
// Storing them like this is optimal for I2C transfers to the registers.
// We could optimize this and take out the unused registers from these
// buffers and the transfers in IS31FL3731_write_pwm_buffer() but it's
// probably not worth the extra complexity.
uint8_t g_pwm_buffer[DRIVER_COUNT][144];
bool g_pwm_buffer_update_required = false;
uint8_t g_led_control_registers[DRIVER_COUNT][18] = { { 0 }, { 0 } };
bool g_led_control_registers_update_required = false;
// This is the bit pattern in the LED control registers
// (for matrix A, add one to register for matrix B)
//
// reg - b7 b6 b5 b4 b3 b2 b1 b0
// 0x00 - R08,R07,R06,R05,R04,R03,R02,R01
// 0x02 - G08,G07,G06,G05,G04,G03,G02,R00
// 0x04 - B08,B07,B06,B05,B04,B03,G01,G00
// 0x06 - - , - , - , - , - ,B02,B01,B00
// 0x08 - - , - , - , - , - , - , - , -
// 0x0A - B17,B16,B15, - , - , - , - , -
// 0x0C - G17,G16,B14,B13,B12,B11,B10,B09
// 0x0E - R17,G15,G14,G13,G12,G11,G10,G09
// 0x10 - R16,R15,R14,R13,R12,R11,R10,R09
void IS31FL3731_write_register( uint8_t addr, uint8_t reg, uint8_t data )
{
g_twi_transfer_buffer[0] = (addr << 1) | 0x00;
g_twi_transfer_buffer[1] = reg;
g_twi_transfer_buffer[2] = data;
// Set the error code to have no relevant information
TWIInfo.errorCode = TWI_NO_RELEVANT_INFO;
// Continuously attempt to transmit data until a successful transmission occurs
//while ( TWIInfo.errorCode != 0xFF )
//{
TWITransmitData( g_twi_transfer_buffer, 3, 0 );
//}
}
void IS31FL3731_write_pwm_buffer( uint8_t addr, uint8_t *pwm_buffer )
{
// assumes bank is already selected
// transmit PWM registers in 9 transfers of 16 bytes
// g_twi_transfer_buffer[] is 20 bytes
// set the I2C address
g_twi_transfer_buffer[0] = (addr << 1) | 0x00;
// iterate over the pwm_buffer contents at 16 byte intervals
for ( int i = 0; i < 144; i += 16 )
{
// set the first register, e.g. 0x24, 0x34, 0x44, etc.
g_twi_transfer_buffer[1] = 0x24 + i;
// copy the data from i to i+15
// device will auto-increment register for data after the first byte
// thus this sets registers 0x24-0x33, 0x34-0x43, etc. in one transfer
for ( int j = 0; j < 16; j++ )
{
g_twi_transfer_buffer[2 + j] = pwm_buffer[i + j];
}
// Set the error code to have no relevant information
TWIInfo.errorCode = TWI_NO_RELEVANT_INFO;
// Continuously attempt to transmit data until a successful transmission occurs
while ( TWIInfo.errorCode != 0xFF )
{
TWITransmitData( g_twi_transfer_buffer, 16 + 2, 0 );
}
}
}
void IS31FL3731_init( uint8_t addr )
{
// In order to avoid the LEDs being driven with garbage data
// in the LED driver's PWM registers, first enable software shutdown,
// then set up the mode and other settings, clear the PWM registers,
// then disable software shutdown.
// select "function register" bank
IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, ISSI_BANK_FUNCTIONREG );
// enable software shutdown
IS31FL3731_write_register( addr, ISSI_REG_SHUTDOWN, 0x00 );
// this delay was copied from other drivers, might not be needed
_delay_ms( 10 );
// picture mode
IS31FL3731_write_register( addr, ISSI_REG_CONFIG, ISSI_REG_CONFIG_PICTUREMODE );
// display frame 0
IS31FL3731_write_register( addr, ISSI_REG_PICTUREFRAME, 0x00 );
// audio sync off
IS31FL3731_write_register( addr, ISSI_REG_AUDIOSYNC, 0x00 );
// select bank 0
IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, 0 );
// turn off all LEDs in the LED control register
for ( int i = 0x00; i <= 0x11; i++ )
{
IS31FL3731_write_register( addr, i, 0x00 );
}
// turn off all LEDs in the blink control register (not really needed)
for ( int i = 0x12; i <= 0x23; i++ )
{
IS31FL3731_write_register( addr, i, 0x00 );
}
// set PWM on all LEDs to 0
for ( int i = 0x24; i <= 0xB3; i++ )
{
IS31FL3731_write_register( addr, i, 0x00 );
}
// select "function register" bank
IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, ISSI_BANK_FUNCTIONREG );
// disable software shutdown
IS31FL3731_write_register( addr, ISSI_REG_SHUTDOWN, 0x01 );
// select bank 0 and leave it selected.
// most usage after initialization is just writing PWM buffers in bank 0
// as there's not much point in double-buffering
IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, 0 );
}
void IS31FL3731_set_color( int index, uint8_t red, uint8_t green, uint8_t blue )
{
if ( index >= 0 && index < DRIVER_LED_TOTAL ) {
is31_led led = g_is31_leds[index];
// Subtract 0x24 to get the second index of g_pwm_buffer
g_pwm_buffer[led.driver][led.r - 0x24] = red;
g_pwm_buffer[led.driver][led.g - 0x24] = green;
g_pwm_buffer[led.driver][led.b - 0x24] = blue;
g_pwm_buffer_update_required = true;
}
}
void IS31FL3731_set_color_all( uint8_t red, uint8_t green, uint8_t blue )
{
for ( int i = 0; i < DRIVER_LED_TOTAL; i++ )
{
IS31FL3731_set_color( i, red, green, blue );
}
}
void IS31FL3731_set_led_control_register( uint8_t index, bool red, bool green, bool blue )
{
is31_led led = g_is31_leds[index];
uint8_t control_register_r = (led.r - 0x24) / 8;
uint8_t control_register_g = (led.g - 0x24) / 8;
uint8_t control_register_b = (led.b - 0x24) / 8;
uint8_t bit_r = (led.r - 0x24) % 8;
uint8_t bit_g = (led.g - 0x24) % 8;
uint8_t bit_b = (led.b - 0x24) % 8;
if ( red ) {
g_led_control_registers[led.driver][control_register_r] |= (1 << bit_r);
} else {
g_led_control_registers[led.driver][control_register_r] &= ~(1 << bit_r);
}
if ( green ) {
g_led_control_registers[led.driver][control_register_g] |= (1 << bit_g);
} else {
g_led_control_registers[led.driver][control_register_g] &= ~(1 << bit_g);
}
if ( blue ) {
g_led_control_registers[led.driver][control_register_b] |= (1 << bit_b);
} else {
g_led_control_registers[led.driver][control_register_b] &= ~(1 << bit_b);
}
g_led_control_registers_update_required = true;
}
void IS31FL3731_update_pwm_buffers( uint8_t addr1, uint8_t addr2 )
{
if ( g_pwm_buffer_update_required )
{
IS31FL3731_write_pwm_buffer( addr1, g_pwm_buffer[0] );
IS31FL3731_write_pwm_buffer( addr2, g_pwm_buffer[1] );
}
g_pwm_buffer_update_required = false;
}
void IS31FL3731_update_led_control_registers( uint8_t addr1, uint8_t addr2 )
{
if ( g_led_control_registers_update_required )
{
for ( int i=0; i<18; i++ )
{
IS31FL3731_write_register(addr1, i, g_led_control_registers[0][i] );
IS31FL3731_write_register(addr2, i, g_led_control_registers[1][i] );
}
}
}

214
drivers/avr/is31fl3731.h Normal file
View file

@ -0,0 +1,214 @@
/* Copyright 2017 Jason Williams
* Copyright 2018 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef IS31FL3731_DRIVER_H
#define IS31FL3731_DRIVER_H
#include <stdint.h>
#include <stdbool.h>
typedef struct is31_led {
uint8_t driver:2;
uint8_t r;
uint8_t g;
uint8_t b;
} __attribute__((packed)) is31_led;
extern const is31_led g_is31_leds[DRIVER_LED_TOTAL];
void IS31FL3731_init( uint8_t addr );
void IS31FL3731_write_register( uint8_t addr, uint8_t reg, uint8_t data );
void IS31FL3731_write_pwm_buffer( uint8_t addr, uint8_t *pwm_buffer );
void IS31FL3731_set_color( int index, uint8_t red, uint8_t green, uint8_t blue );
void IS31FL3731_set_color_all( uint8_t red, uint8_t green, uint8_t blue );
void IS31FL3731_set_led_control_register( uint8_t index, bool red, bool green, bool blue );
// This should not be called from an interrupt
// (eg. from a timer interrupt).
// Call this while idle (in between matrix scans).
// If the buffer is dirty, it will update the driver with the buffer.
void IS31FL3731_update_pwm_buffers( uint8_t addr1, uint8_t addr2 );
void IS31FL3731_update_led_control_registers( uint8_t addr1, uint8_t addr2 );
#define C1_1 0x24
#define C1_2 0x25
#define C1_3 0x26
#define C1_4 0x27
#define C1_5 0x28
#define C1_6 0x29
#define C1_7 0x2A
#define C1_8 0x2B
#define C1_9 0x2C
#define C1_10 0x2D
#define C1_11 0x2E
#define C1_12 0x2F
#define C1_13 0x30
#define C1_14 0x31
#define C1_15 0x32
#define C1_16 0x33
#define C2_1 0x34
#define C2_2 0x35
#define C2_3 0x36
#define C2_4 0x37
#define C2_5 0x38
#define C2_6 0x39
#define C2_7 0x3A
#define C2_8 0x3B
#define C2_9 0x3C
#define C2_10 0x3D
#define C2_11 0x3E
#define C2_12 0x3F
#define C2_13 0x40
#define C2_14 0x41
#define C2_15 0x42
#define C2_16 0x43
#define C3_1 0x44
#define C3_2 0x45
#define C3_3 0x46
#define C3_4 0x47
#define C3_5 0x48
#define C3_6 0x49
#define C3_7 0x4A
#define C3_8 0x4B
#define C3_9 0x4C
#define C3_10 0x4D
#define C3_11 0x4E
#define C3_12 0x4F
#define C3_13 0x50
#define C3_14 0x51
#define C3_15 0x52
#define C3_16 0x53
#define C4_1 0x54
#define C4_2 0x55
#define C4_3 0x56
#define C4_4 0x57
#define C4_5 0x58
#define C4_6 0x59
#define C4_7 0x5A
#define C4_8 0x5B
#define C4_9 0x5C
#define C4_10 0x5D
#define C4_11 0x5E
#define C4_12 0x5F
#define C4_13 0x60
#define C4_14 0x61
#define C4_15 0x62
#define C4_16 0x63
#define C5_1 0x64
#define C5_2 0x65
#define C5_3 0x66
#define C5_4 0x67
#define C5_5 0x68
#define C5_6 0x69
#define C5_7 0x6A
#define C5_8 0x6B
#define C5_9 0x6C
#define C5_10 0x6D
#define C5_11 0x6E
#define C5_12 0x6F
#define C5_13 0x70
#define C5_14 0x71
#define C5_15 0x72
#define C5_16 0x73
#define C6_1 0x74
#define C6_2 0x75
#define C6_3 0x76
#define C6_4 0x77
#define C6_5 0x78
#define C6_6 0x79
#define C6_7 0x7A
#define C6_8 0x7B
#define C6_9 0x7C
#define C6_10 0x7D
#define C6_11 0x7E
#define C6_12 0x7F
#define C6_13 0x80
#define C6_14 0x81
#define C6_15 0x82
#define C6_16 0x83
#define C7_1 0x84
#define C7_2 0x85
#define C7_3 0x86
#define C7_4 0x87
#define C7_5 0x88
#define C7_6 0x89
#define C7_7 0x8A
#define C7_8 0x8B
#define C7_9 0x8C
#define C7_10 0x8D
#define C7_11 0x8E
#define C7_12 0x8F
#define C7_13 0x90
#define C7_14 0x91
#define C7_15 0x92
#define C7_16 0x93
#define C8_1 0x94
#define C8_2 0x95
#define C8_3 0x96
#define C8_4 0x97
#define C8_5 0x98
#define C8_6 0x99
#define C8_7 0x9A
#define C8_8 0x9B
#define C8_9 0x9C
#define C8_10 0x9D
#define C8_11 0x9E
#define C8_12 0x9F
#define C8_13 0xA0
#define C8_14 0xA1
#define C8_15 0xA2
#define C8_16 0xA3
#define C9_1 0xA4
#define C9_2 0xA5
#define C9_3 0xA6
#define C9_4 0xA7
#define C9_5 0xA8
#define C9_6 0xA9
#define C9_7 0xAA
#define C9_8 0xAB
#define C9_9 0xAC
#define C9_10 0xAD
#define C9_11 0xAE
#define C9_12 0xAF
#define C9_13 0xB0
#define C9_14 0xB1
#define C9_15 0xB2
#define C9_16 0xB3
#endif // IS31FL3731_DRIVER_H

View file

@ -24,5 +24,22 @@
#define NO_USB_STARTUP_CHECK
#define PLANCK_MIT_LAYOUT
#endif
// This is a 7-bit address, that gets left-shifted and bit 0
// set to 0 for write, 1 for read (as per I2C protocol)
// The address will vary depending on your wiring:
// 0b1110100 AD <-> GND
// 0b1110111 AD <-> VCC
// 0b1110101 AD <-> SCL
// 0b1110110 AD <-> SDA
#define DRIVER_ADDR_1 0b1110100
#define DRIVER_ADDR_2 0b1110110
#define DRIVER_COUNT 2
#define DRIVER_1_LED_TOTAL 25
#define DRIVER_2_LED_TOTAL 24
#define DRIVER_LED_TOTAL DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL
#endif

View file

@ -1,5 +1,4 @@
/* Copyright 2017 Jason Williams
* Copyright 2017 Jack Humbert
/* Copyright 2017 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -17,6 +16,127 @@
#include "light.h"
const is31_led g_is31_leds[DRIVER_LED_TOTAL] = {
/* Refer to IS31 manual for these locations
* driver
* | R location
* | | G location
* | | | B location
* | | | | */
{0, C1_3, C2_3, C3_3},
{0, C1_4, C2_4, C3_4},
{0, C1_5, C2_5, C3_5},
{0, C1_11, C2_11, C3_11},
{0, C1_12, C2_12, C3_12},
{0, C1_13, C2_13, C3_13},
{1, C1_3, C2_3, C3_3},
{1, C1_4, C2_4, C3_4},
{1, C1_5, C2_5, C3_5},
{1, C1_11, C2_11, C3_11},
{1, C1_12, C2_12, C3_12},
{1, C1_13, C2_13, C3_13},
{0, C1_6, C2_6, C3_6},
{0, C1_7, C2_7, C3_7},
{0, C1_8, C2_8, C3_8},
{0, C1_14, C2_14, C3_14},
{0, C1_15, C2_15, C3_15},
{0, C1_16, C2_16, C3_16},
{1, C1_6, C2_6, C3_6},
{1, C1_7, C2_7, C3_7},
{1, C1_8, C2_8, C3_8},
{1, C1_14, C2_14, C3_14},
{1, C1_15, C2_15, C3_15},
{1, C1_16, C2_16, C3_16},
{0, C9_1, C8_1, C7_1},
{0, C9_2, C8_2, C7_2},
{0, C9_3, C8_3, C7_3},
{0, C9_9, C8_9, C7_9},
{0, C9_10, C8_10, C7_10},
{0, C9_11, C8_11, C7_11},
{1, C9_1, C8_1, C7_1},
{1, C9_2, C8_2, C7_2},
{1, C9_3, C8_3, C7_3},
{1, C9_9, C8_9, C7_9},
{1, C9_10, C8_10, C7_10},
{1, C9_11, C8_11, C7_11},
{0, C9_4, C8_4, C7_4},
{0, C9_5, C8_5, C7_5},
{0, C9_6, C8_6, C7_6},
{0, C9_12, C8_12, C7_12},
{0, C9_13, C8_13, C7_13},
{0, C9_14, C8_14, C7_14},
{0, C9_15, C8_15, C6_14}, // middle 2u switch
{1, C9_4, C8_4, C7_4},
{1, C9_5, C8_5, C7_5},
{1, C9_6, C8_6, C7_6},
{1, C9_12, C8_12, C7_12},
{1, C9_13, C8_13, C7_13},
{1, C9_14, C8_14, C7_14}
};
const rgb_led g_rgb_leds[DRIVER_LED_TOTAL] = {
/*{row | col << 4}
| {x=0..224, y=0..64}
| | modifier
| | | */
{{0|(0<<4)}, {20.36*0, 21.33*0}, 1},
{{0|(1<<4)}, {20.36*1, 21.33*0}, 0},
{{0|(2<<4)}, {20.36*2, 21.33*0}, 0},
{{0|(3<<4)}, {20.36*3, 21.33*0}, 0},
{{0|(4<<4)}, {20.36*4, 21.33*0}, 0},
{{0|(5<<4)}, {20.36*5, 21.33*0}, 0},
{{0|(6<<4)}, {20.36*6, 21.33*0}, 0},
{{0|(7<<4)}, {20.36*7, 21.33*0}, 0},
{{0|(8<<4)}, {20.36*8, 21.33*0}, 0},
{{0|(9<<4)}, {20.36*9, 21.33*0}, 0},
{{0|(10<<4)}, {20.36*10,21.33*0}, 0},
{{0|(11<<4)}, {20.36*11,21.33*0}, 1},
{{1|(0<<4)}, {20.36*0, 21.33*1}, 1},
{{1|(1<<4)}, {20.36*1, 21.33*1}, 0},
{{1|(2<<4)}, {20.36*2, 21.33*1}, 0},
{{1|(3<<4)}, {20.36*3, 21.33*1}, 0},
{{1|(4<<4)}, {20.36*4, 21.33*1}, 0},
{{1|(5<<4)}, {20.36*5, 21.33*1}, 0},
{{1|(6<<4)}, {20.36*6, 21.33*1}, 0},
{{1|(7<<4)}, {20.36*7, 21.33*1}, 0},
{{1|(8<<4)}, {20.36*8, 21.33*1}, 0},
{{1|(9<<4)}, {20.36*9, 21.33*1}, 0},
{{1|(10<<4)}, {20.36*10,21.33*1}, 0},
{{1|(11<<4)}, {20.36*11,21.33*1}, 1},
{{2|(0<<4)}, {20.36*0, 21.33*2}, 1},
{{2|(1<<4)}, {20.36*1, 21.33*2}, 0},
{{2|(2<<4)}, {20.36*2, 21.33*2}, 0},
{{2|(3<<4)}, {20.36*3, 21.33*2}, 0},
{{2|(4<<4)}, {20.36*4, 21.33*2}, 0},
{{2|(5<<4)}, {20.36*5, 21.33*2}, 0},
{{2|(6<<4)}, {20.36*6, 21.33*2}, 0},
{{2|(7<<4)}, {20.36*7, 21.33*2}, 0},
{{2|(8<<4)}, {20.36*8, 21.33*2}, 0},
{{2|(9<<4)}, {20.36*9, 21.33*2}, 0},
{{2|(10<<4)}, {20.36*10,21.33*2}, 0},
{{2|(11<<4)}, {20.36*11,21.33*2}, 1},
{{3|(0<<4)}, {20.36*0, 21.33*3}, 1},
{{3|(1<<4)}, {20.36*1, 21.33*3}, 1},
{{3|(2<<4)}, {20.36*2, 21.33*3}, 1},
{{3|(3<<4)}, {20.36*3, 21.33*3}, 1},
{{3|(4<<4)}, {20.36*4, 21.33*3}, 1},
{{3|(5<<4)}, {20.36*5, 21.33*3}, 0},
{{3|(5<<4)}, {20.36*5.5,21.33*3}, 0},
{{3|(6<<4)}, {20.36*6, 21.33*3}, 0},
{{3|(7<<4)}, {20.36*7, 21.33*3}, 1},
{{3|(8<<4)}, {20.36*8, 21.33*3}, 1},
{{3|(9<<4)}, {20.36*9, 21.33*3}, 1},
{{3|(10<<4)}, {20.36*10,21.33*3}, 1},
{{3|(11<<4)}, {20.36*11,21.33*3}, 1}
};
void matrix_init_kb(void) {
// Turn status LED on
@ -27,13 +147,22 @@ void matrix_init_kb(void) {
}
bool process_record_kb(uint16_t keycode, keyrecord_t *record)
{
{
return process_record_user(keycode, record);
}
uint16_t backlight_task_counter = 0;
void matrix_scan_kb(void)
{
matrix_scan_user();
}
}
void suspend_power_down_kb(void)
{
rgb_matrix_set_suspend_state(true);
}
void suspend_wakeup_init_kb(void)
{
rgb_matrix_set_suspend_state(false);
}

View file

@ -1,5 +1,4 @@
/* Copyright 2017 Jason Williams
* Copyright 2017 Jack Humbert
/* Copyright 2017 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -19,5 +18,6 @@
#define LIGHT_H
#include "planck.h"
#include "rgb_matrix.h"
#endif

View file

@ -1,7 +1,5 @@
MIDI_ENABLE = yes
AUDIO_ENABLE = yes # Audio output on port C6
MOUSEKEY_ENABLE = no # Mouse keys(+4700)
NKRO_ENABLE = yes # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE = yes # Enable keyboard backlight functionality
RGB_MATRIX_ENABLE = yes
MCU = at90usb1286

View file

@ -48,7 +48,7 @@ ifeq ($(strip $(KEYBOARD)), planck/rev5)
BOOTLOADER = qmk-dfu
endif
ifeq ($(strip $(KEYBOARD)), planck/light)
BOOTLOADER = qmk-dfu
BOOTLOADER = atmel-dfu
endif
# Interrupt driven control endpoint task(+60)

87
quantum/color.c Normal file
View file

@ -0,0 +1,87 @@
/* Copyright 2017 Jason Williams
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "color.h"
#include "led_tables.h"
#include "progmem.h"
RGB hsv_to_rgb( HSV hsv )
{
RGB rgb;
uint8_t region, p, q, t;
uint16_t h, s, v, remainder;
if ( hsv.s == 0 )
{
rgb.r = hsv.v;
rgb.g = hsv.v;
rgb.b = hsv.v;
return rgb;
}
h = hsv.h;
s = hsv.s;
v = hsv.v;
region = h / 43;
remainder = (h - (region * 43)) * 6;
p = (v * (255 - s)) >> 8;
q = (v * (255 - ((s * remainder) >> 8))) >> 8;
t = (v * (255 - ((s * (255 - remainder)) >> 8))) >> 8;
switch ( region )
{
case 0:
rgb.r = v;
rgb.g = t;
rgb.b = p;
break;
case 1:
rgb.r = q;
rgb.g = v;
rgb.b = p;
break;
case 2:
rgb.r = p;
rgb.g = v;
rgb.b = t;
break;
case 3:
rgb.r = p;
rgb.g = q;
rgb.b = v;
break;
case 4:
rgb.r = t;
rgb.g = p;
rgb.b = v;
break;
default:
rgb.r = v;
rgb.g = p;
rgb.b = q;
break;
}
rgb.r = pgm_read_byte( &CIE1931_CURVE[rgb.r] );
rgb.g = pgm_read_byte( &CIE1931_CURVE[rgb.g] );
rgb.b = pgm_read_byte( &CIE1931_CURVE[rgb.b] );
return rgb;
}

55
quantum/color.h Normal file
View file

@ -0,0 +1,55 @@
/* Copyright 2017 Jason Williams
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef COLOR_H
#define COLOR_H
#include <stdint.h>
#include <stdbool.h>
#if defined(__GNUC__)
#define PACKED __attribute__ ((__packed__))
#else
#define PACKED
#endif
#if defined(_MSC_VER)
#pragma pack( push, 1 )
#endif
typedef struct PACKED
{
uint8_t r;
uint8_t g;
uint8_t b;
} RGB;
typedef struct PACKED
{
uint8_t h;
uint8_t s;
uint8_t v;
} HSV;
#if defined(_MSC_VER)
#pragma pack( pop )
#endif
RGB hsv_to_rgb( HSV hsv );
#endif // COLOR_H

View file

@ -230,6 +230,9 @@ bool process_record_quantum(keyrecord_t *record) {
process_clicky(keycode, record) &&
#endif //AUDIO_CLICKY
process_record_kb(keycode, record) &&
#if defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_KEYPRESSES)
process_rgb_matrix(keycode, record) &&
#endif
#if defined(MIDI_ENABLE) && defined(MIDI_ADVANCED)
process_midi(keycode, record) &&
#endif
@ -307,7 +310,7 @@ bool process_record_quantum(keyrecord_t *record) {
}
return false;
#endif
#ifdef RGBLIGHT_ENABLE
#if defined(RGBLIGHT_ENABLE) || defined(RGB_MATRIX_ENABLE)
case RGB_TOG:
if (record->event.pressed) {
rgblight_toggle();
@ -835,9 +838,18 @@ void matrix_init_quantum() {
#ifdef AUDIO_ENABLE
audio_init();
#endif
#ifdef RGB_MATRIX_ENABLE
rgb_matrix_init_drivers();
#endif
matrix_init_kb();
}
uint8_t rgb_matrix_task_counter = 0;
#ifndef RGB_MATRIX_SKIP_FRAMES
#define RGB_MATRIX_SKIP_FRAMES 1
#endif
void matrix_scan_quantum() {
#if defined(AUDIO_ENABLE)
matrix_scan_music();
@ -855,9 +867,16 @@ void matrix_scan_quantum() {
backlight_task();
#endif
#ifdef RGB_MATRIX_ENABLE
rgb_matrix_task();
if (rgb_matrix_task_counter == 0) {
rgb_matrix_update_pwm_buffers();
}
rgb_matrix_task_counter = ((rgb_matrix_task_counter + 1) % (RGB_MATRIX_SKIP_FRAMES + 1));
#endif
matrix_scan_kb();
}
#if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_PIN)
static const uint8_t backlight_pin = BACKLIGHT_PIN;

View file

@ -27,9 +27,15 @@
#ifdef BACKLIGHT_ENABLE
#include "backlight.h"
#endif
#if !defined(RGBLIGHT_ENABLE) && !defined(RGB_MATRIX_ENABLE)
#include "rgb.h"
#endif
#ifdef RGBLIGHT_ENABLE
#include "rgblight.h"
#endif
#ifdef RGB_MATRIX_ENABLE
#include "rgb_matrix.h"
#endif
#include "action_layer.h"
#include "eeconfig.h"
#include <stddef.h>

47
quantum/rgb.h Normal file
View file

@ -0,0 +1,47 @@
/* Copyright 2017 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef RGB_H
#define RGB_H
__attribute__((weak))
void rgblight_toggle(void) {};
__attribute__((weak))
void rgblight_step(void) {};
__attribute__((weak))
void rgblight_step_reverse(void) {};
__attribute__((weak))
void rgblight_increase_hue(void) {};
__attribute__((weak))
void rgblight_decrease_hue(void) {};
__attribute__((weak))
void rgblight_increase_sat(void) {};
__attribute__((weak))
void rgblight_decrease_sat(void) {};
__attribute__((weak))
void rgblight_increase_val(void) {};
__attribute__((weak))
void rgblight_decrease_val(void) {};
#endif

873
quantum/rgb_matrix.c Normal file
View file

@ -0,0 +1,873 @@
/* Copyright 2017 Jason Williams
* Copyright 2017 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "rgb_matrix.h"
#include <avr/io.h>
#include "TWIlib.h"
#include <util/delay.h>
#include <avr/interrupt.h>
#include "progmem.h"
#include "config.h"
#include "eeprom.h"
#include "lufa.h"
#include <math.h>
rgb_config_t rgb_matrix_config;
#ifndef RGB_DISABLE_AFTER_TIMEOUT
#define RGB_DISABLE_AFTER_TIMEOUT 0
#endif
#ifndef RGB_DISABLE_WHEN_USB_SUSPENDED
#define RGB_DISABLE_WHEN_USB_SUSPENDED false
#endif
#ifndef EECONFIG_RGB_MATRIX
#define EECONFIG_RGB_MATRIX EECONFIG_RGBLIGHT
#endif
bool g_suspend_state = false;
// Global tick at 20 Hz
uint32_t g_tick = 0;
// Ticks since this key was last hit.
uint8_t g_key_hit[DRIVER_LED_TOTAL];
// Ticks since any key was last hit.
uint32_t g_any_key_hit = 0;
#ifndef PI
#define PI 3.14159265
#endif
uint32_t eeconfig_read_rgb_matrix(void) {
return eeprom_read_dword(EECONFIG_RGB_MATRIX);
}
void eeconfig_update_rgb_matrix(uint32_t val) {
eeprom_update_dword(EECONFIG_RGB_MATRIX, val);
}
void eeconfig_update_rgb_matrix_default(void) {
dprintf("eeconfig_update_rgb_matrix_default\n");
rgb_matrix_config.enable = 1;
rgb_matrix_config.mode = RGB_MATRIX_CYCLE_LEFT_RIGHT;
rgb_matrix_config.hue = 0;
rgb_matrix_config.sat = 255;
rgb_matrix_config.val = 255;
eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}
void eeconfig_debug_rgb_matrix(void) {
dprintf("rgb_matrix_config eprom\n");
dprintf("rgb_matrix_config.enable = %d\n", rgb_matrix_config.enable);
dprintf("rgb_matrix_config.mode = %d\n", rgb_matrix_config.mode);
dprintf("rgb_matrix_config.hue = %d\n", rgb_matrix_config.hue);
dprintf("rgb_matrix_config.sat = %d\n", rgb_matrix_config.sat);
dprintf("rgb_matrix_config.val = %d\n", rgb_matrix_config.val);
}
// Last led hit
#define LED_HITS_TO_REMEMBER 8
uint8_t g_last_led_hit[LED_HITS_TO_REMEMBER] = {255};
uint8_t g_last_led_count = 0;
void map_row_column_to_led( uint8_t row, uint8_t column, uint8_t *led_i, uint8_t *led_count) {
rgb_led led;
*led_count = 0;
for (uint8_t i = 0; i < DRIVER_LED_TOTAL; i++) {
// map_index_to_led(i, &led);
led = g_rgb_leds[i];
if (row == led.matrix_co.row && column == led.matrix_co.col) {
led_i[*led_count] = i;
(*led_count)++;
}
}
}
void rgb_matrix_update_pwm_buffers(void) {
IS31FL3731_update_pwm_buffers( DRIVER_ADDR_1, DRIVER_ADDR_2 );
IS31FL3731_update_led_control_registers( DRIVER_ADDR_1, DRIVER_ADDR_2 );
}
void rgb_matrix_set_color( int index, uint8_t red, uint8_t green, uint8_t blue ) {
IS31FL3731_set_color( index, red, green, blue );
}
void rgb_matrix_set_color_all( uint8_t red, uint8_t green, uint8_t blue ) {
IS31FL3731_set_color_all( red, green, blue );
}
bool process_rgb_matrix(uint16_t keycode, keyrecord_t *record) {
if ( record->event.pressed ) {
uint8_t led[8], led_count;
map_row_column_to_led(record->event.key.row, record->event.key.col, led, &led_count);
if (led_count > 0) {
for (uint8_t i = LED_HITS_TO_REMEMBER; i > 1; i--) {
g_last_led_hit[i - 1] = g_last_led_hit[i - 2];
}
g_last_led_hit[0] = led[0];
g_last_led_count = MIN(LED_HITS_TO_REMEMBER, g_last_led_count + 1);
}
for(uint8_t i = 0; i < led_count; i++)
g_key_hit[led[i]] = 0;
g_any_key_hit = 0;
} else {
#ifdef RGB_MATRIX_KEYRELEASES
uint8_t led[8], led_count;
map_row_column_to_led(record->event.key.row, record->event.key.col, led, &led_count);
for(uint8_t i = 0; i < led_count; i++)
g_key_hit[led[i]] = 255;
g_any_key_hit = 255;
#endif
}
return true;
}
void rgb_matrix_set_suspend_state(bool state) {
g_suspend_state = state;
}
void rgb_matrix_test(void) {
// Mask out bits 4 and 5
// This 2-bit value will stay the same for 16 ticks.
switch ( (g_tick & 0x30) >> 4 )
{
case 0:
{
rgb_matrix_set_color_all( 20, 0, 0 );
break;
}
case 1:
{
rgb_matrix_set_color_all( 0, 20, 0 );
break;
}
case 2:
{
rgb_matrix_set_color_all( 0, 0, 20 );
break;
}
case 3:
{
rgb_matrix_set_color_all( 20, 20, 20 );
break;
}
}
}
// This tests the LEDs
// Note that it will change the LED control registers
// in the LED drivers, and leave them in an invalid
// state for other backlight effects.
// ONLY USE THIS FOR TESTING LEDS!
void rgb_matrix_single_LED_test(void) {
static uint8_t color = 0; // 0,1,2 for R,G,B
static uint8_t row = 0;
static uint8_t column = 0;
static uint8_t tick = 0;
tick++;
if ( tick > 2 )
{
tick = 0;
column++;
}
if ( column > MATRIX_COLS )
{
column = 0;
row++;
}
if ( row > MATRIX_ROWS )
{
row = 0;
color++;
}
if ( color > 2 )
{
color = 0;
}
uint8_t led[8], led_count;
map_row_column_to_led(row,column,led,&led_count);
for(uint8_t i = 0; i < led_count; i++) {
rgb_matrix_set_color_all( 40, 40, 40 );
rgb_matrix_test_led( led[i], color==0, color==1, color==2 );
}
}
// All LEDs off
void rgb_matrix_all_off(void) {
rgb_matrix_set_color_all( 0, 0, 0 );
}
// Solid color
void rgb_matrix_solid_color(void) {
HSV hsv = { .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val };
RGB rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color_all( rgb.r, rgb.g, rgb.b );
}
void rgb_matrix_solid_reactive(void) {
// Relies on hue being 8-bit and wrapping
for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
{
uint16_t offset2 = g_key_hit[i]<<2;
offset2 = (offset2<=130) ? (130-offset2) : 0;
HSV hsv = { .h = rgb_matrix_config.hue+offset2, .s = 255, .v = rgb_matrix_config.val };
RGB rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
}
// alphas = color1, mods = color2
void rgb_matrix_alphas_mods(void) {
RGB rgb1 = hsv_to_rgb( (HSV){ .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val } );
RGB rgb2 = hsv_to_rgb( (HSV){ .h = (rgb_matrix_config.hue + 180) % 360, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val } );
rgb_led led;
for (int i = 0; i < DRIVER_LED_TOTAL; i++) {
led = g_rgb_leds[i];
if ( led.matrix_co.raw < 0xFF ) {
if ( led.modifier )
{
rgb_matrix_set_color( i, rgb2.r, rgb2.g, rgb2.b );
}
else
{
rgb_matrix_set_color( i, rgb1.r, rgb1.g, rgb1.b );
}
}
}
}
void rgb_matrix_gradient_up_down(void) {
int16_t h1 = rgb_matrix_config.hue;
int16_t h2 = (rgb_matrix_config.hue + 180) % 360;
int16_t deltaH = h2 - h1;
// Take the shortest path between hues
if ( deltaH > 127 )
{
deltaH -= 256;
}
else if ( deltaH < -127 )
{
deltaH += 256;
}
// Divide delta by 4, this gives the delta per row
deltaH /= 4;
int16_t s1 = rgb_matrix_config.sat;
int16_t s2 = rgb_matrix_config.hue;
int16_t deltaS = ( s2 - s1 ) / 4;
HSV hsv = { .h = 0, .s = 255, .v = rgb_matrix_config.val };
RGB rgb;
Point point;
for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
{
// map_led_to_point( i, &point );
point = g_rgb_leds[i].point;
// The y range will be 0..64, map this to 0..4
uint8_t y = (point.y>>4);
// Relies on hue being 8-bit and wrapping
hsv.h = rgb_matrix_config.hue + ( deltaH * y );
hsv.s = rgb_matrix_config.sat + ( deltaS * y );
rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
}
void rgb_matrix_raindrops(bool initialize) {
int16_t h1 = rgb_matrix_config.hue;
int16_t h2 = (rgb_matrix_config.hue + 180) % 360;
int16_t deltaH = h2 - h1;
deltaH /= 4;
// Take the shortest path between hues
if ( deltaH > 127 )
{
deltaH -= 256;
}
else if ( deltaH < -127 )
{
deltaH += 256;
}
int16_t s1 = rgb_matrix_config.sat;
int16_t s2 = rgb_matrix_config.sat;
int16_t deltaS = ( s2 - s1 ) / 4;
HSV hsv;
RGB rgb;
// Change one LED every tick
uint8_t led_to_change = ( g_tick & 0x000 ) == 0 ? rand() % DRIVER_LED_TOTAL : 255;
for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
{
// If initialize, all get set to random colors
// If not, all but one will stay the same as before.
if ( initialize || i == led_to_change )
{
hsv.h = h1 + ( deltaH * ( rand() & 0x03 ) );
hsv.s = s1 + ( deltaS * ( rand() & 0x03 ) );
// Override brightness with global brightness control
hsv.v = rgb_matrix_config.val;
rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
}
}
void rgb_matrix_cycle_all(void) {
uint8_t offset = g_tick & 0xFF;
rgb_led led;
// Relies on hue being 8-bit and wrapping
for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
{
// map_index_to_led(i, &led);
led = g_rgb_leds[i];
if (led.matrix_co.raw < 0xFF) {
uint16_t offset2 = g_key_hit[i]<<2;
offset2 = (offset2<=63) ? (63-offset2) : 0;
HSV hsv = { .h = offset+offset2, .s = 255, .v = rgb_matrix_config.val };
RGB rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
}
}
void rgb_matrix_cycle_left_right(void) {
uint8_t offset = g_tick & 0xFF;
HSV hsv = { .h = 0, .s = 255, .v = rgb_matrix_config.val };
RGB rgb;
Point point;
rgb_led led;
for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
{
// map_index_to_led(i, &led);
led = g_rgb_leds[i];
if (led.matrix_co.raw < 0xFF) {
uint16_t offset2 = g_key_hit[i]<<2;
offset2 = (offset2<=63) ? (63-offset2) : 0;
// map_led_to_point( i, &point );
point = g_rgb_leds[i].point;
// Relies on hue being 8-bit and wrapping
hsv.h = point.x + offset + offset2;
rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
}
}
void rgb_matrix_cycle_up_down(void) {
uint8_t offset = g_tick & 0xFF;
HSV hsv = { .h = 0, .s = 255, .v = rgb_matrix_config.val };
RGB rgb;
Point point;
rgb_led led;
for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
{
// map_index_to_led(i, &led);
led = g_rgb_leds[i];
if (led.matrix_co.raw < 0xFF) {
uint16_t offset2 = g_key_hit[i]<<2;
offset2 = (offset2<=63) ? (63-offset2) : 0;
// map_led_to_point( i, &point );
point = g_rgb_leds[i].point;
// Relies on hue being 8-bit and wrapping
hsv.h = point.y + offset + offset2;
rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
}
}
void rgb_matrix_dual_beacon(void) {
HSV hsv = { .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val };
RGB rgb;
rgb_led led;
for (uint8_t i = 0; i < DRIVER_LED_TOTAL; i++) {
led = g_rgb_leds[i];
hsv.h = ((led.point.y - 32.0)* cos(g_tick * PI / 128) / 32 + (led.point.x - 112.0) * sin(g_tick * PI / 128) / (112)) * (180) + rgb_matrix_config.hue;
rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
}
void rgb_matrix_rainbow_beacon(void) {
HSV hsv = { .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val };
RGB rgb;
rgb_led led;
for (uint8_t i = 0; i < DRIVER_LED_TOTAL; i++) {
led = g_rgb_leds[i];
hsv.h = 1.5 * (led.point.y - 32.0)* cos(g_tick * PI / 128) + 1.5 * (led.point.x - 112.0) * sin(g_tick * PI / 128) + rgb_matrix_config.hue;
rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
}
void rgb_matrix_rainbow_pinwheels(void) {
HSV hsv = { .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val };
RGB rgb;
rgb_led led;
for (uint8_t i = 0; i < DRIVER_LED_TOTAL; i++) {
led = g_rgb_leds[i];
hsv.h = 2 * (led.point.y - 32.0)* cos(g_tick * PI / 128) + 2 * (66 - abs(led.point.x - 112.0)) * sin(g_tick * PI / 128) + rgb_matrix_config.hue;
rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
}
void rgb_matrix_rainbow_moving_chevron(void) {
HSV hsv = { .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val };
RGB rgb;
rgb_led led;
for (uint8_t i = 0; i < DRIVER_LED_TOTAL; i++) {
led = g_rgb_leds[i];
// uint8_t r = g_tick;
uint8_t r = 32;
hsv.h = 1.5 * abs(led.point.y - 32.0)* sin(r * PI / 128) + 1.5 * (led.point.x - (g_tick / 256.0 * 224)) * cos(r * PI / 128) + rgb_matrix_config.hue;
rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
}
void rgb_matrix_jellybean_raindrops( bool initialize ) {
HSV hsv;
RGB rgb;
// Change one LED every tick
uint8_t led_to_change = ( g_tick & 0x000 ) == 0 ? rand() % DRIVER_LED_TOTAL : 255;
for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
{
// If initialize, all get set to random colors
// If not, all but one will stay the same as before.
if ( initialize || i == led_to_change )
{
hsv.h = rand() & 0xFF;
hsv.s = rand() & 0xFF;
// Override brightness with global brightness control
hsv.v = rgb_matrix_config.val;
rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
}
}
void rgb_matrix_multisplash(void) {
// if (g_any_key_hit < 0xFF) {
HSV hsv = { .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val };
RGB rgb;
rgb_led led;
for (uint8_t i = 0; i < DRIVER_LED_TOTAL; i++) {
led = g_rgb_leds[i];
uint16_t c = 0, d = 0;
rgb_led last_led;
// if (g_last_led_count) {
for (uint8_t last_i = 0; last_i < g_last_led_count; last_i++) {
last_led = g_rgb_leds[g_last_led_hit[last_i]];
uint16_t dist = (uint16_t)sqrt(pow(led.point.x - last_led.point.x, 2) + pow(led.point.y - last_led.point.y, 2));
uint16_t effect = (g_key_hit[g_last_led_hit[last_i]] << 2) - dist;
c += MIN(MAX(effect, 0), 255);
d += 255 - MIN(MAX(effect, 0), 255);
}
// } else {
// d = 255;
// }
hsv.h = (rgb_matrix_config.hue + c) % 256;
hsv.v = MAX(MIN(d, 255), 0);
rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
// } else {
// rgb_matrix_set_color_all( 0, 0, 0 );
// }
}
void rgb_matrix_splash(void) {
g_last_led_count = MIN(g_last_led_count, 1);
rgb_matrix_multisplash();
}
void rgb_matrix_solid_multisplash(void) {
// if (g_any_key_hit < 0xFF) {
HSV hsv = { .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val };
RGB rgb;
rgb_led led;
for (uint8_t i = 0; i < DRIVER_LED_TOTAL; i++) {
led = g_rgb_leds[i];
uint16_t d = 0;
rgb_led last_led;
// if (g_last_led_count) {
for (uint8_t last_i = 0; last_i < g_last_led_count; last_i++) {
last_led = g_rgb_leds[g_last_led_hit[last_i]];
uint16_t dist = (uint16_t)sqrt(pow(led.point.x - last_led.point.x, 2) + pow(led.point.y - last_led.point.y, 2));
uint16_t effect = (g_key_hit[g_last_led_hit[last_i]] << 2) - dist;
d += 255 - MIN(MAX(effect, 0), 255);
}
// } else {
// d = 255;
// }
hsv.v = MAX(MIN(d, 255), 0);
rgb = hsv_to_rgb( hsv );
rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
}
// } else {
// rgb_matrix_set_color_all( 0, 0, 0 );
// }
}
void rgb_matrix_solid_splash(void) {
g_last_led_count = MIN(g_last_led_count, 1);
rgb_matrix_solid_multisplash();
}
// Needs eeprom access that we don't have setup currently
void rgb_matrix_custom(void) {
// HSV hsv;
// RGB rgb;
// for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
// {
// backlight_get_key_color(i, &hsv);
// // Override brightness with global brightness control
// hsv.v = rgb_matrix_config.val;
// rgb = hsv_to_rgb( hsv );
// rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
// }
}
void rgb_matrix_task(void) {
if (!rgb_matrix_config.enable) {
rgb_matrix_all_off();
return;
}
// delay 1 second before driving LEDs or doing anything else
static uint8_t startup_tick = 0;
if ( startup_tick < 20 ) {
startup_tick++;
return;
}
g_tick++;
if ( g_any_key_hit < 0xFFFFFFFF ) {
g_any_key_hit++;
}
for ( int led = 0; led < DRIVER_LED_TOTAL; led++ ) {
if ( g_key_hit[led] < 255 ) {
if (g_key_hit[led] == 254)
g_last_led_count = MAX(g_last_led_count - 1, 0);
g_key_hit[led]++;
}
}
// Factory default magic value
if ( rgb_matrix_config.mode == 255 ) {
rgb_matrix_test();
return;
}
// Ideally we would also stop sending zeros to the LED driver PWM buffers
// while suspended and just do a software shutdown. This is a cheap hack for now.
bool suspend_backlight = ((g_suspend_state && RGB_DISABLE_WHEN_USB_SUSPENDED) ||
(RGB_DISABLE_AFTER_TIMEOUT > 0 && g_any_key_hit > RGB_DISABLE_AFTER_TIMEOUT * 60 * 20));
uint8_t effect = suspend_backlight ? 0 : rgb_matrix_config.mode;
// Keep track of the effect used last time,
// detect change in effect, so each effect can
// have an optional initialization.
static uint8_t effect_last = 255;
bool initialize = effect != effect_last;
effect_last = effect;
// this gets ticked at 20 Hz.
// each effect can opt to do calculations
// and/or request PWM buffer updates.
switch ( effect ) {
case RGB_MATRIX_SOLID_COLOR:
rgb_matrix_solid_color();
break;
case RGB_MATRIX_SOLID_REACTIVE:
rgb_matrix_solid_reactive();
break;
case RGB_MATRIX_ALPHAS_MODS:
rgb_matrix_alphas_mods();
break;
case RGB_MATRIX_DUAL_BEACON:
rgb_matrix_dual_beacon();
break;
case RGB_MATRIX_GRADIENT_UP_DOWN:
rgb_matrix_gradient_up_down();
break;
case RGB_MATRIX_RAINDROPS:
rgb_matrix_raindrops( initialize );
break;
case RGB_MATRIX_CYCLE_ALL:
rgb_matrix_cycle_all();
break;
case RGB_MATRIX_CYCLE_LEFT_RIGHT:
rgb_matrix_cycle_left_right();
break;
case RGB_MATRIX_CYCLE_UP_DOWN:
rgb_matrix_cycle_up_down();
break;
case RGB_MATRIX_RAINBOW_BEACON:
rgb_matrix_rainbow_beacon();
break;
case RGB_MATRIX_RAINBOW_PINWHEELS:
rgb_matrix_rainbow_pinwheels();
break;
case RGB_MATRIX_RAINBOW_MOVING_CHEVRON:
rgb_matrix_rainbow_moving_chevron();
break;
case RGB_MATRIX_JELLYBEAN_RAINDROPS:
rgb_matrix_jellybean_raindrops( initialize );
break;
#ifdef RGB_MATRIX_KEYPRESSES
case RGB_MATRIX_SPLASH:
rgb_matrix_splash();
break;
case RGB_MATRIX_MULTISPLASH:
rgb_matrix_multisplash();
break;
case RGB_MATRIX_SOLID_SPLASH:
rgb_matrix_solid_splash();
break;
case RGB_MATRIX_SOLID_MULTISPLASH:
rgb_matrix_solid_multisplash();
break;
#endif
default:
rgb_matrix_custom();
break;
}
if ( ! suspend_backlight ) {
rgb_matrix_indicators();
}
}
void rgb_matrix_indicators(void) {
rgb_matrix_indicators_kb();
rgb_matrix_indicators_user();
}
__attribute__((weak))
void rgb_matrix_indicators_kb(void) {}
__attribute__((weak))
void rgb_matrix_indicators_user(void) {}
// void rgb_matrix_set_indicator_index( uint8_t *index, uint8_t row, uint8_t column )
// {
// if ( row >= MATRIX_ROWS )
// {
// // Special value, 255=none, 254=all
// *index = row;
// }
// else
// {
// // This needs updated to something like
// // uint8_t led[8], led_count;
// // map_row_column_to_led(row,column,led,&led_count);
// // for(uint8_t i = 0; i < led_count; i++)
// map_row_column_to_led( row, column, index );
// }
// }
void rgb_matrix_init_drivers(void) {
//sei();
// Initialize TWI
TWIInit();
IS31FL3731_init( DRIVER_ADDR_1 );
IS31FL3731_init( DRIVER_ADDR_2 );
for ( int index = 0; index < DRIVER_LED_TOTAL; index++ ) {
bool enabled = true;
// This only caches it for later
IS31FL3731_set_led_control_register( index, enabled, enabled, enabled );
}
// This actually updates the LED drivers
IS31FL3731_update_led_control_registers( DRIVER_ADDR_1, DRIVER_ADDR_2 );
// TODO: put the 1 second startup delay here?
// clear the key hits
for ( int led=0; led<DRIVER_LED_TOTAL; led++ ) {
g_key_hit[led] = 255;
}
if (!eeconfig_is_enabled()) {
dprintf("rgb_matrix_init_drivers eeconfig is not enabled.\n");
eeconfig_init();
eeconfig_update_rgb_matrix_default();
}
rgb_matrix_config.raw = eeconfig_read_rgb_matrix();
if (!rgb_matrix_config.mode) {
dprintf("rgb_matrix_init_drivers rgb_matrix_config.mode = 0. Write default values to EEPROM.\n");
eeconfig_update_rgb_matrix_default();
rgb_matrix_config.raw = eeconfig_read_rgb_matrix();
}
eeconfig_debug_rgb_matrix(); // display current eeprom values
}
// Deals with the messy details of incrementing an integer
uint8_t increment( uint8_t value, uint8_t step, uint8_t min, uint8_t max ) {
int16_t new_value = value;
new_value += step;
return MIN( MAX( new_value, min ), max );
}
uint8_t decrement( uint8_t value, uint8_t step, uint8_t min, uint8_t max ) {
int16_t new_value = value;
new_value -= step;
return MIN( MAX( new_value, min ), max );
}
// void *backlight_get_custom_key_color_eeprom_address( uint8_t led )
// {
// // 3 bytes per color
// return EECONFIG_RGB_MATRIX + ( led * 3 );
// }
// void backlight_get_key_color( uint8_t led, HSV *hsv )
// {
// void *address = backlight_get_custom_key_color_eeprom_address( led );
// hsv->h = eeprom_read_byte(address);
// hsv->s = eeprom_read_byte(address+1);
// hsv->v = eeprom_read_byte(address+2);
// }
// void backlight_set_key_color( uint8_t row, uint8_t column, HSV hsv )
// {
// uint8_t led[8], led_count;
// map_row_column_to_led(row,column,led,&led_count);
// for(uint8_t i = 0; i < led_count; i++) {
// if ( led[i] < DRIVER_LED_TOTAL )
// {
// void *address = backlight_get_custom_key_color_eeprom_address(led[i]);
// eeprom_update_byte(address, hsv.h);
// eeprom_update_byte(address+1, hsv.s);
// eeprom_update_byte(address+2, hsv.v);
// }
// }
// }
void rgb_matrix_test_led( uint8_t index, bool red, bool green, bool blue ) {
for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
{
if ( i == index )
{
IS31FL3731_set_led_control_register( i, red, green, blue );
}
else
{
IS31FL3731_set_led_control_register( i, false, false, false );
}
}
}
uint32_t rgb_matrix_get_tick(void) {
return g_tick;
}
void rgblight_toggle(void) {
rgb_matrix_config.enable ^= 1;
eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}
void rgblight_step(void) {
rgb_matrix_config.mode++;
if (rgb_matrix_config.mode >= RGB_MATRIX_EFFECT_MAX)
rgb_matrix_config.mode = 1;
eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}
void rgblight_step_reverse(void) {
rgb_matrix_config.mode--;
if (rgb_matrix_config.mode <= 1)
rgb_matrix_config.mode = (RGB_MATRIX_EFFECT_MAX - 1);
eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}
void rgblight_increase_hue(void) {
rgb_matrix_config.hue = increment( rgb_matrix_config.hue, 8, 0, 255 );
eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}
void rgblight_decrease_hue(void) {
rgb_matrix_config.hue = decrement( rgb_matrix_config.hue, 8, 0, 255 );
eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}
void rgblight_increase_sat(void) {
rgb_matrix_config.sat = increment( rgb_matrix_config.sat, 8, 0, 255 );
eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}
void rgblight_decrease_sat(void) {
rgb_matrix_config.sat = decrement( rgb_matrix_config.sat, 8, 0, 255 );
eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}
void rgblight_increase_val(void) {
rgb_matrix_config.val = increment( rgb_matrix_config.val, 8, 0, 255 );
eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}
void rgblight_decrease_val(void) {
rgb_matrix_config.val = decrement( rgb_matrix_config.val, 8, 0, 255 );
eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}
void rgblight_mode(uint8_t mode) {
rgb_matrix_config.mode = mode;
eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}
uint32_t rgblight_get_mode(void) {
return rgb_matrix_config.mode;
}

135
quantum/rgb_matrix.h Normal file
View file

@ -0,0 +1,135 @@
/* Copyright 2017 Jason Williams
* Copyright 2017 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef RGB_MATRIX_H
#define RGB_MATRIX_H
#include <stdint.h>
#include <stdbool.h>
#include "color.h"
#include "is31fl3731.h"
#include "quantum.h"
typedef struct Point {
uint8_t x;
uint8_t y;
} __attribute__((packed)) Point;
typedef struct rgb_led {
union {
uint8_t raw;
struct {
uint8_t row:4; // 16 max
uint8_t col:4; // 16 max
};
} matrix_co;
Point point;
uint8_t modifier:1;
} __attribute__((packed)) rgb_led;
extern const rgb_led g_rgb_leds[DRIVER_LED_TOTAL];
typedef struct
{
HSV color;
uint8_t index;
} rgb_indicator;
typedef union {
uint32_t raw;
struct {
bool enable :1;
uint8_t mode :6;
uint16_t hue :9;
uint8_t sat :8;
uint8_t val :8;
};
} rgb_config_t;
enum rgb_matrix_effects {
RGB_MATRIX_SOLID_COLOR = 1,
RGB_MATRIX_SOLID_REACTIVE,
RGB_MATRIX_ALPHAS_MODS,
RGB_MATRIX_DUAL_BEACON,
RGB_MATRIX_GRADIENT_UP_DOWN,
RGB_MATRIX_RAINDROPS,
RGB_MATRIX_CYCLE_ALL,
RGB_MATRIX_CYCLE_LEFT_RIGHT,
RGB_MATRIX_CYCLE_UP_DOWN,
RGB_MATRIX_RAINBOW_BEACON,
RGB_MATRIX_RAINBOW_PINWHEELS,
RGB_MATRIX_RAINBOW_MOVING_CHEVRON,
RGB_MATRIX_JELLYBEAN_RAINDROPS,
#ifdef RGB_MATRIX_KEYPRESSES
RGB_MATRIX_SPLASH,
RGB_MATRIX_MULTISPLASH,
RGB_MATRIX_SOLID_SPLASH,
RGB_MATRIX_SOLID_MULTISPLASH,
#endif
RGB_MATRIX_EFFECT_MAX
};
void rgb_matrix_set_color( int index, uint8_t red, uint8_t green, uint8_t blue );
// This runs after another backlight effect and replaces
// colors already set
void rgb_matrix_indicators(void);
void rgb_matrix_indicators_kb(void);
void rgb_matrix_indicators_user(void);
void rgb_matrix_single_LED_test(void);
void rgb_matrix_init_drivers(void);
void rgb_matrix_set_suspend_state(bool state);
void rgb_matrix_set_indicator_state(uint8_t state);
void rgb_matrix_task(void);
// This should not be called from an interrupt
// (eg. from a timer interrupt).
// Call this while idle (in between matrix scans).
// If the buffer is dirty, it will update the driver with the buffer.
void rgb_matrix_update_pwm_buffers(void);
bool process_rgb_matrix(uint16_t keycode, keyrecord_t *record);
void rgb_matrix_increase(void);
void rgb_matrix_decrease(void);
// void *backlight_get_key_color_eeprom_address(uint8_t led);
// void backlight_get_key_color( uint8_t led, HSV *hsv );
// void backlight_set_key_color( uint8_t row, uint8_t column, HSV hsv );
void rgb_matrix_test_led( uint8_t index, bool red, bool green, bool blue );
uint32_t rgb_matrix_get_tick(void);
void rgblight_toggle(void);
void rgblight_step(void);
void rgblight_step_reverse(void);
void rgblight_increase_hue(void);
void rgblight_decrease_hue(void);
void rgblight_increase_sat(void);
void rgblight_decrease_sat(void);
void rgblight_increase_val(void);
void rgblight_decrease_val(void);
void rgblight_mode(uint8_t mode);
uint32_t rgblight_get_mode(void);
#endif