1
0
Fork 0

Add support for the ErgoDone

This commit is contained in:
Yu He 2017-08-12 16:05:05 +02:00 committed by Jack Humbert
parent f02430b131
commit 52f4a38cb3
13 changed files with 1067 additions and 0 deletions

View file

@ -32,6 +32,9 @@
#ifdef SUBPROJECT_infinity
#include "infinity/config.h"
#endif
#ifdef SUBPROJECT_ergodone
#include "ergodone/config.h"
#endif
#endif /* KEYBOARDS_ERGODOX_CONFIG_H_ */

View file

@ -0,0 +1,3 @@
ifndef MAKEFILE_INCLUDED
include ../../../Makefile
endif

View file

@ -0,0 +1,49 @@
#ifndef ERGODOX_ERGODONE_CONFIG_H
#define ERGODOX_ERGODONE_CONFIG_H
#include "../config.h"
#include "config_common.h"
/* USB Device descriptor parameter */
#define VENDOR_ID 0xFEED
#define PRODUCT_ID 0x1307
#define DEVICE_VER 0x0001
#define MANUFACTURER ErgoDone
#define PRODUCT ErgoDone
#define DESCRIPTION QMK keyboard firmware for ErgoDone
/* key matrix size */
#define MATRIX_ROWS 6
#define MATRIX_COLS 14
/* fix space cadet rollover issue */
#define DISABLE_SPACE_CADET_ROLLOVER
/* Set 0 if debouncing isn't needed */
#define DEBOUNCE 5
#define PREVENT_STUCK_MODIFIERS
#define USB_MAX_POWER_CONSUMPTION 500
/*
* Feature disable options
* These options are also useful to firmware size reduction.
*/
/* disable debug print */
// #define NO_DEBUG
/* disable print */
// #define NO_PRINT
/* disable action features */
//#define NO_ACTION_LAYER
//#define NO_ACTION_TAPPING
//#define NO_ACTION_ONESHOT
//#define NO_ACTION_MACRO
//#define NO_ACTION_FUNCTION
//#define DEBUG_MATRIX_SCAN_RATE
#endif

View file

@ -0,0 +1,5 @@
#include "ergodone.h"
void matrix_init_kb(void) {
matrix_init_user();
}

View file

@ -0,0 +1,54 @@
#ifndef ERGODOX_ERGODONE_H
#define ERGODOX_ERGODONE_H
#include "quantum.h"
#include <stdint.h>
#include <stdbool.h>
#define CPU_PRESCALE(n) (CLKPR = 0x80, CLKPR = (n))
#define CPU_16MHz 0x00
void init_ergodox(void);
inline void ergodox_right_led_1_off(void) {}
inline void ergodox_right_led_1_on(void) {}
inline void ergodox_right_led_2_off(void) {}
inline void ergodox_right_led_2_on(void) {}
inline void ergodox_right_led_3_off(void) {}
inline void ergodox_right_led_3_on(void) {}
inline void ergodox_board_led_off(void) {}
inline void ergodox_board_led_on(void) {}
#define KEYMAP( \
\
/* left hand, spatial positions */ \
k00,k01,k02,k03,k04,k05,k06, \
k10,k11,k12,k13,k14,k15,k16, \
k20,k21,k22,k23,k24,k25, \
k30,k31,k32,k33,k34,k35,k36, \
k40,k41,k42,k43,k44, \
k55,k56, \
k54, \
k53,k52,k51, \
\
/* right hand, spatial positions */ \
k07,k08,k09,k0A,k0B,k0C,k0D, \
k17,k18,k19,k1A,k1B,k1C,k1D, \
k28,k29,k2A,k2B,k2C,k2D, \
k37,k38,k39,k3A,k3B,k3C,k3D, \
k49,k4A,k4B,k4C,k4D, \
k57,k58, \
k59, \
k5C,k5B,k5A ) \
\
/* matrix positions */ \
{ \
{ k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0A, k0B, k0C, k0D }, \
{ k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1A, k1B, k1C, k1D }, \
{ k20, k21, k22, k23, k24, k25, KC_NO, KC_NO, k28, k29, k2A, k2B, k2C, k2D }, \
{ k30, k31, k32, k33, k34, k35, k36, k37, k38, k39, k3A, k3B, k3C, k3D }, \
{ k40, k41, k42, k43, k44, KC_NO, KC_NO, KC_NO, KC_NO, k49, k4A, k4B, k4C, k4D }, \
{ KC_NO, k51, k52, k53, k54, k55, k56, k57, k58, k59, k5A, k5B, k5C, KC_NO } \
}
#endif

View file

@ -0,0 +1,120 @@
#include <stdbool.h>
#include "action.h"
#include "i2cmaster.h"
#include "expander.h"
#include "debug.h"
static uint8_t expander_status = 0;
static uint8_t expander_input = 0;
void expander_config(void);
uint8_t expander_write(uint8_t reg, uint8_t data);
uint8_t expander_read(uint8_t reg, uint8_t *data);
void expander_init(void)
{
i2c_init();
expander_scan();
}
void expander_scan(void)
{
dprintf("expander status: %d ... ", expander_status);
uint8_t ret = i2c_start(EXPANDER_ADDR | I2C_WRITE);
if (ret == 0) {
i2c_stop();
if (expander_status == 0) {
dprintf("attached\n");
expander_status = 1;
expander_config();
clear_keyboard();
}
}
else {
if (expander_status == 1) {
dprintf("detached\n");
expander_status = 0;
clear_keyboard();
}
}
dprintf("%d\n", expander_status);
}
void expander_read_cols(void)
{
expander_read(EXPANDER_REG_GPIOA, &expander_input);
}
uint8_t expander_get_col(uint8_t col)
{
if (col > 4) {
col++;
}
return expander_input & (1<<col) ? 1 : 0;
}
matrix_row_t expander_read_row(void)
{
expander_read_cols();
/* make cols */
matrix_row_t cols = 0;
for (uint8_t col = 0; col < MATRIX_COLS; col++) {
if (expander_get_col(col)) {
cols |= (1UL << (MATRIX_COLS - 1 - col));
}
}
return cols;
}
void expander_unselect_rows(void)
{
expander_write(EXPANDER_REG_IODIRB, 0xFF);
}
void expander_select_row(uint8_t row)
{
expander_write(EXPANDER_REG_IODIRB, ~(1<<(row+1)));
}
void expander_config(void)
{
expander_write(EXPANDER_REG_IPOLA, 0xFF);
expander_write(EXPANDER_REG_GPPUA, 0xFF);
expander_write(EXPANDER_REG_IODIRB, 0xFF);
}
uint8_t expander_write(uint8_t reg, uint8_t data)
{
if (expander_status == 0) {
return 0;
}
uint8_t ret;
ret = i2c_start(EXPANDER_ADDR | I2C_WRITE);
if (ret) goto stop;
ret = i2c_write(reg);
if (ret) goto stop;
ret = i2c_write(data);
stop:
i2c_stop();
return ret;
}
uint8_t expander_read(uint8_t reg, uint8_t *data)
{
if (expander_status == 0) {
return 0;
}
uint8_t ret;
ret = i2c_start(EXPANDER_ADDR | I2C_WRITE);
if (ret) goto stop;
ret = i2c_write(reg);
if (ret) goto stop;
ret = i2c_rep_start(EXPANDER_ADDR | I2C_READ);
if (ret) goto stop;
*data = i2c_readNak();
stop:
i2c_stop();
return ret;
}

View file

@ -0,0 +1,48 @@
#ifndef EXPANDER_H
#define EXPANDER_H
#include <stdint.h>
#include "matrix.h"
#define MCP23017
#define MCP23017_A0 0
#define MCP23017_A1 0
#define MCP23017_A2 0
#ifdef MCP23017
#define EXPANDER_ADDR ((0x20|(MCP23017_A0<<0)|(MCP23017_A1<<1)|(MCP23017_A2<<2)) << 1)
enum EXPANDER_REG_BANK0 {
EXPANDER_REG_IODIRA = 0,
EXPANDER_REG_IODIRB,
EXPANDER_REG_IPOLA,
EXPANDER_REG_IPOLB,
EXPANDER_REG_GPINTENA,
EXPANDER_REG_GPINTENB,
EXPANDER_REG_DEFVALA,
EXPANDER_REG_DEFVALB,
EXPANDER_REG_INTCONA,
EXPANDER_REG_INTCONB,
EXPANDER_REG_IOCONA,
EXPANDER_REG_IOCONB,
EXPANDER_REG_GPPUA,
EXPANDER_REG_GPPUB,
EXPANDER_REG_INTFA,
EXPANDER_REG_INTFB,
EXPANDER_REG_INTCAPA,
EXPANDER_REG_INTCAPB,
EXPANDER_REG_GPIOA,
EXPANDER_REG_GPIOB,
EXPANDER_REG_OLATA,
EXPANDER_REG_OLATB
};
#endif
void expander_init(void);
void expander_scan(void);
void expander_read_cols(void);
uint8_t expander_get_col(uint8_t col);
matrix_row_t expander_read_row(void);
void expander_unselect_rows(void);
void expander_select_row(uint8_t row);
#endif

View file

@ -0,0 +1,178 @@
#ifndef _I2CMASTER_H
#define _I2CMASTER_H 1
/*************************************************************************
* Title: C include file for the I2C master interface
* (i2cmaster.S or twimaster.c)
* Author: Peter Fleury <pfleury@gmx.ch> http://jump.to/fleury
* File: $Id: i2cmaster.h,v 1.10 2005/03/06 22:39:57 Peter Exp $
* Software: AVR-GCC 3.4.3 / avr-libc 1.2.3
* Target: any AVR device
* Usage: see Doxygen manual
**************************************************************************/
#ifdef DOXYGEN
/**
@defgroup pfleury_ic2master I2C Master library
@code #include <i2cmaster.h> @endcode
@brief I2C (TWI) Master Software Library
Basic routines for communicating with I2C slave devices. This single master
implementation is limited to one bus master on the I2C bus.
This I2c library is implemented as a compact assembler software implementation of the I2C protocol
which runs on any AVR (i2cmaster.S) and as a TWI hardware interface for all AVR with built-in TWI hardware (twimaster.c).
Since the API for these two implementations is exactly the same, an application can be linked either against the
software I2C implementation or the hardware I2C implementation.
Use 4.7k pull-up resistor on the SDA and SCL pin.
Adapt the SCL and SDA port and pin definitions and eventually the delay routine in the module
i2cmaster.S to your target when using the software I2C implementation !
Adjust the CPU clock frequence F_CPU in twimaster.c or in the Makfile when using the TWI hardware implementaion.
@note
The module i2cmaster.S is based on the Atmel Application Note AVR300, corrected and adapted
to GNU assembler and AVR-GCC C call interface.
Replaced the incorrect quarter period delays found in AVR300 with
half period delays.
@author Peter Fleury pfleury@gmx.ch http://jump.to/fleury
@par API Usage Example
The following code shows typical usage of this library, see example test_i2cmaster.c
@code
#include <i2cmaster.h>
#define Dev24C02 0xA2 // device address of EEPROM 24C02, see datasheet
int main(void)
{
unsigned char ret;
i2c_init(); // initialize I2C library
// write 0x75 to EEPROM address 5 (Byte Write)
i2c_start_wait(Dev24C02+I2C_WRITE); // set device address and write mode
i2c_write(0x05); // write address = 5
i2c_write(0x75); // write value 0x75 to EEPROM
i2c_stop(); // set stop conditon = release bus
// read previously written value back from EEPROM address 5
i2c_start_wait(Dev24C02+I2C_WRITE); // set device address and write mode
i2c_write(0x05); // write address = 5
i2c_rep_start(Dev24C02+I2C_READ); // set device address and read mode
ret = i2c_readNak(); // read one byte from EEPROM
i2c_stop();
for(;;);
}
@endcode
*/
#endif /* DOXYGEN */
/**@{*/
#if (__GNUC__ * 100 + __GNUC_MINOR__) < 304
#error "This library requires AVR-GCC 3.4 or later, update to newer AVR-GCC compiler !"
#endif
#include <avr/io.h>
/** defines the data direction (reading from I2C device) in i2c_start(),i2c_rep_start() */
#define I2C_READ 1
/** defines the data direction (writing to I2C device) in i2c_start(),i2c_rep_start() */
#define I2C_WRITE 0
/**
@brief initialize the I2C master interace. Need to be called only once
@param void
@return none
*/
extern void i2c_init(void);
/**
@brief Terminates the data transfer and releases the I2C bus
@param void
@return none
*/
extern void i2c_stop(void);
/**
@brief Issues a start condition and sends address and transfer direction
@param addr address and transfer direction of I2C device
@retval 0 device accessible
@retval 1 failed to access device
*/
extern unsigned char i2c_start(unsigned char addr);
/**
@brief Issues a repeated start condition and sends address and transfer direction
@param addr address and transfer direction of I2C device
@retval 0 device accessible
@retval 1 failed to access device
*/
extern unsigned char i2c_rep_start(unsigned char addr);
/**
@brief Issues a start condition and sends address and transfer direction
If device is busy, use ack polling to wait until device ready
@param addr address and transfer direction of I2C device
@return none
*/
extern void i2c_start_wait(unsigned char addr);
/**
@brief Send one byte to I2C device
@param data byte to be transfered
@retval 0 write successful
@retval 1 write failed
*/
extern unsigned char i2c_write(unsigned char data);
/**
@brief read one byte from the I2C device, request more data from device
@return byte read from I2C device
*/
extern unsigned char i2c_readAck(void);
/**
@brief read one byte from the I2C device, read is followed by a stop condition
@return byte read from I2C device
*/
extern unsigned char i2c_readNak(void);
/**
@brief read one byte from the I2C device
Implemented as a macro, which calls either i2c_readAck or i2c_readNak
@param ack 1 send ack, request more data from device<br>
0 send nak, read is followed by a stop condition
@return byte read from I2C device
*/
extern unsigned char i2c_read(unsigned char ack);
#define i2c_read(ack) (ack) ? i2c_readAck() : i2c_readNak();
/**@}*/
#endif

View file

@ -0,0 +1,295 @@
#include <stdint.h>
#include <stdbool.h>
#include <avr/io.h>
#include "wait.h"
#include "action_layer.h"
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#include "ergodone.h"
#include "expander.h"
#ifdef DEBUG_MATRIX_SCAN_RATE
#include "timer.h"
#endif
/*
* This constant define not debouncing time in msecs, but amount of matrix
* scan loops which should be made to get stable debounced results.
*
* On Ergodox matrix scan rate is relatively low, because of slow I2C.
* Now it's only 317 scans/second, or about 3.15 msec/scan.
* According to Cherry specs, debouncing time is 5 msec.
*
* And so, there is no sense to have DEBOUNCE higher than 2.
*/
#ifndef DEBOUNCE
# define DEBOUNCE 5
#endif
/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
// Debouncing: store for each key the number of scans until it's eligible to
// change. When scanning the matrix, ignore any changes in keys that have
// already changed in the last DEBOUNCE scans.
static uint8_t debounce_matrix[MATRIX_ROWS * MATRIX_COLS];
static matrix_row_t read_cols(uint8_t row);
static void init_cols(void);
static void unselect_rows(void);
static void select_row(uint8_t row);
#ifdef DEBUG_MATRIX_SCAN_RATE
uint32_t matrix_timer;
uint32_t matrix_scan_count;
#endif
__attribute__ ((weak))
void matrix_init_user(void) {}
__attribute__ ((weak))
void matrix_scan_user(void) {}
__attribute__ ((weak))
void matrix_init_kb(void) {
matrix_init_user();
}
__attribute__ ((weak))
void matrix_scan_kb(void) {
matrix_scan_user();
}
inline
uint8_t matrix_rows(void)
{
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void)
{
return MATRIX_COLS;
}
void matrix_init(void)
{
// disable JTAG
MCUCR = (1<<JTD);
MCUCR = (1<<JTD);
unselect_rows();
init_cols();
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
for (uint8_t j=0; j < MATRIX_COLS; ++j) {
debounce_matrix[i * MATRIX_COLS + j] = 0;
}
}
#ifdef DEBUG_MATRIX_SCAN_RATE
matrix_timer = timer_read32();
matrix_scan_count = 0;
#endif
matrix_init_quantum();
}
void matrix_power_up(void) {
unselect_rows();
init_cols();
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
}
#ifdef DEBUG_MATRIX_SCAN_RATE
matrix_timer = timer_read32();
matrix_scan_count = 0;
#endif
}
// Returns a matrix_row_t whose bits are set if the corresponding key should be
// eligible to change in this scan.
matrix_row_t debounce_mask(uint8_t row) {
matrix_row_t result = 0;
for (uint8_t j=0; j < MATRIX_COLS; ++j) {
if (debounce_matrix[row * MATRIX_COLS + j]) {
--debounce_matrix[row * MATRIX_COLS + j];
} else {
result |= (1 << j);
}
}
return result;
}
// Report changed keys in the given row. Resets the debounce countdowns
// corresponding to each set bit in 'change' to DEBOUNCE.
void debounce_report(matrix_row_t change, uint8_t row) {
for (uint8_t i = 0; i < MATRIX_COLS; ++i) {
if (change & (1 << i)) {
debounce_matrix[row * MATRIX_COLS + i] = DEBOUNCE;
}
}
}
uint8_t matrix_scan(void)
{
expander_scan();
#ifdef DEBUG_MATRIX_SCAN_RATE
matrix_scan_count++;
uint32_t timer_now = timer_read32();
if (TIMER_DIFF_32(timer_now, matrix_timer)>1000) {
print("matrix scan frequency: ");
pdec(matrix_scan_count);
print("\n");
matrix_print();
matrix_timer = timer_now;
matrix_scan_count = 0;
}
#endif
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
select_row(i);
wait_us(30); // without this wait read unstable value.
matrix_row_t mask = debounce_mask(i);
matrix_row_t cols = (read_cols(i) & mask) | (matrix[i] & ~mask);
debounce_report(cols ^ matrix[i], i);
matrix[i] = cols;
unselect_rows();
}
matrix_scan_quantum();
return 1;
}
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & ((matrix_row_t)1<<col));
}
inline
matrix_row_t matrix_get_row(uint8_t row)
{
return matrix[row];
}
void matrix_print(void)
{
print("\nr/c 0123456789ABCDEF\n");
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
phex(row); print(": ");
pbin_reverse16(matrix_get_row(row));
print("\n");
}
}
uint8_t matrix_key_count(void)
{
uint8_t count = 0;
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
count += bitpop16(matrix[i]);
}
return count;
}
/* Column pin configuration
*
* Pro Micro: 6 5 4 3 2 1 0
* PD3 PD2 PD4 PC6 PD7 PE6 PB4
*
* Expander: 13 12 11 10 9 8 7
*/
static void init_cols(void)
{
// Pro Micro
DDRE &= ~(1<<PE6);
PORTE |= (1<<PE6);
DDRD &= ~(1<<PD2 | 1<<PD3 | 1<<PD4 | 1<<PD7);
PORTD |= (1<<PD2 | 1<<PD3 | 1<<PD4 | 1<<PD7);
DDRC &= ~(1<<PC6);
PORTC |= (1<<PC6);
DDRB &= ~(1<<PB4);
PORTB |= (1<<PB4);
// MCP23017
expander_init();
}
static matrix_row_t read_cols(uint8_t row)
{
return expander_read_row() |
(PIND&(1<<PD3) ? 0 : (1<<6)) |
(PIND&(1<<PD2) ? 0 : (1<<5)) |
(PIND&(1<<PD4) ? 0 : (1<<4)) |
(PINC&(1<<PC6) ? 0 : (1<<3)) |
(PIND&(1<<PD7) ? 0 : (1<<2)) |
(PINE&(1<<PE6) ? 0 : (1<<1)) |
(PINB&(1<<PB4) ? 0 : (1<<0)) ;
}
/* Row pin configuration
*
* Pro Micro: 0 1 2 3 4 5
* F4 F5 F6 F7 B1 B2
*
* Expander: 0 1 2 3 4 5
*/
static void unselect_rows(void)
{
// Pro Micro
DDRF &= ~(1<<PF4 | 1<<PF5 | 1<<PF6 | 1<<PF7);
PORTF &= ~(1<<PF4 | 1<<PF5 | 1<<PF6 | 1<<PF7);
DDRB &= ~(1<<PB1 | 1<<PB2);
PORTB &= ~(1<<PB1 | 1<<PB2);
// Expander
expander_unselect_rows();
}
static void select_row(uint8_t row)
{
// Pro Micro
switch (row) {
case 0:
DDRF |= (1<<PF4);
PORTF &= ~(1<<PF4);
break;
case 1:
DDRF |= (1<<PF5);
PORTF &= ~(1<<PF5);
break;
case 2:
DDRF |= (1<<PF6);
PORTF &= ~(1<<PF6);
break;
case 3:
DDRF |= (1<<PF7);
PORTF &= ~(1<<PF7);
break;
case 4:
DDRB |= (1<<PB1);
PORTB &= ~(1<<PB1);
break;
case 5:
DDRB |= (1<<PB2);
PORTB &= ~(1<<PB2);
break;
}
expander_select_row(row);
}

View file

@ -0,0 +1,91 @@
#----------------------------------------------------------------------------
# On command line:
#
# make = Make software.
#
# make clean = Clean out built project files.
#
# That's pretty much all you need. To compile, always go make clean,
# followed by make.
#
# For advanced users only:
# make teensy = Download the hex file to the device, using teensy_loader_cli.
# (must have teensy_loader_cli installed).
#
#----------------------------------------------------------------------------
# # project specific files
SRC = \
twimaster.c \
matrix.c \
expander.c \
# MCU name
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE = yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = yes # Mouse keys(+4700)
EXTRAKEY_ENABLE = yes # Audio control and System control(+450)
CONSOLE_ENABLE = no # Console for debug(+400)
COMMAND_ENABLE = no # Commands for debug and configuration
SLEEP_LED_ENABLE = no # Breathing sleep LED during USB suspend
NKRO_ENABLE = yes # USB Nkey Rollover - not yet supported in LUFA
USB_6KRO_ENABLE = no # USB 6key Rollover
BACKLIGHT_ENABLE = no # Enable keyboard backlight functionality
KEYMAP_IN_EEPROM_ENABLE = no # External keymap in eeprom
KEYMAP_SECTION_ENABLE = no # Fixed address keymap for keymap editor
SOFTPWM_LED_ENABLE = no # Enable SoftPWM to drive backlight
FADING_LED_ENABLE = no # Enable fading backlight
BREATHING_LED_ENABLE = no # Enable breathing backlight
LEDMAP_ENABLE = no # Enable LED mapping
LEDMAP_IN_EEPROM_ENABLE = no # Read LED mapping from eeprom
ONEHAND_ENABLE = no # Disable Onehand
RGBLIGHT_ENABLE = no
MIDI_ENABLE = no

View file

@ -0,0 +1,208 @@
/*************************************************************************
* Title: I2C master library using hardware TWI interface
* Author: Peter Fleury <pfleury@gmx.ch> http://jump.to/fleury
* File: $Id: twimaster.c,v 1.3 2005/07/02 11:14:21 Peter Exp $
* Software: AVR-GCC 3.4.3 / avr-libc 1.2.3
* Target: any AVR device with hardware TWI
* Usage: API compatible with I2C Software Library i2cmaster.h
**************************************************************************/
#include <inttypes.h>
#include <compat/twi.h>
#include <i2cmaster.h>
/* define CPU frequency in Mhz here if not defined in Makefile */
#ifndef F_CPU
#define F_CPU 16000000UL
#endif
/* I2C clock in Hz */
#define SCL_CLOCK 400000L
/*************************************************************************
Initialization of the I2C bus interface. Need to be called only once
*************************************************************************/
void i2c_init(void)
{
/* initialize TWI clock
* minimal values in Bit Rate Register (TWBR) and minimal Prescaler
* bits in the TWI Status Register should give us maximal possible
* I2C bus speed - about 444 kHz
*
* for more details, see 20.5.2 in ATmega16/32 secification
*/
TWSR = 0; /* no prescaler */
TWBR = 10; /* must be >= 10 for stable operation */
}/* i2c_init */
/*************************************************************************
Issues a start condition and sends address and transfer direction.
return 0 = device accessible, 1= failed to access device
*************************************************************************/
unsigned char i2c_start(unsigned char address)
{
uint8_t twst;
// send START condition
TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);
// wait until transmission completed
while(!(TWCR & (1<<TWINT)));
// check value of TWI Status Register. Mask prescaler bits.
twst = TW_STATUS & 0xF8;
if ( (twst != TW_START) && (twst != TW_REP_START)) return 1;
// send device address
TWDR = address;
TWCR = (1<<TWINT) | (1<<TWEN);
// wail until transmission completed and ACK/NACK has been received
while(!(TWCR & (1<<TWINT)));
// check value of TWI Status Register. Mask prescaler bits.
twst = TW_STATUS & 0xF8;
if ( (twst != TW_MT_SLA_ACK) && (twst != TW_MR_SLA_ACK) ) return 1;
return 0;
}/* i2c_start */
/*************************************************************************
Issues a start condition and sends address and transfer direction.
If device is busy, use ack polling to wait until device is ready
Input: address and transfer direction of I2C device
*************************************************************************/
void i2c_start_wait(unsigned char address)
{
uint8_t twst;
while ( 1 )
{
// send START condition
TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);
// wait until transmission completed
while(!(TWCR & (1<<TWINT)));
// check value of TWI Status Register. Mask prescaler bits.
twst = TW_STATUS & 0xF8;
if ( (twst != TW_START) && (twst != TW_REP_START)) continue;
// send device address
TWDR = address;
TWCR = (1<<TWINT) | (1<<TWEN);
// wail until transmission completed
while(!(TWCR & (1<<TWINT)));
// check value of TWI Status Register. Mask prescaler bits.
twst = TW_STATUS & 0xF8;
if ( (twst == TW_MT_SLA_NACK )||(twst ==TW_MR_DATA_NACK) )
{
/* device busy, send stop condition to terminate write operation */
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
// wait until stop condition is executed and bus released
while(TWCR & (1<<TWSTO));
continue;
}
//if( twst != TW_MT_SLA_ACK) return 1;
break;
}
}/* i2c_start_wait */
/*************************************************************************
Issues a repeated start condition and sends address and transfer direction
Input: address and transfer direction of I2C device
Return: 0 device accessible
1 failed to access device
*************************************************************************/
unsigned char i2c_rep_start(unsigned char address)
{
return i2c_start( address );
}/* i2c_rep_start */
/*************************************************************************
Terminates the data transfer and releases the I2C bus
*************************************************************************/
void i2c_stop(void)
{
/* send stop condition */
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
// wait until stop condition is executed and bus released
while(TWCR & (1<<TWSTO));
}/* i2c_stop */
/*************************************************************************
Send one byte to I2C device
Input: byte to be transfered
Return: 0 write successful
1 write failed
*************************************************************************/
unsigned char i2c_write( unsigned char data )
{
uint8_t twst;
// send data to the previously addressed device
TWDR = data;
TWCR = (1<<TWINT) | (1<<TWEN);
// wait until transmission completed
while(!(TWCR & (1<<TWINT)));
// check value of TWI Status Register. Mask prescaler bits
twst = TW_STATUS & 0xF8;
if( twst != TW_MT_DATA_ACK) return 1;
return 0;
}/* i2c_write */
/*************************************************************************
Read one byte from the I2C device, request more data from device
Return: byte read from I2C device
*************************************************************************/
unsigned char i2c_readAck(void)
{
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWEA);
while(!(TWCR & (1<<TWINT)));
return TWDR;
}/* i2c_readAck */
/*************************************************************************
Read one byte from the I2C device, read is followed by a stop condition
Return: byte read from I2C device
*************************************************************************/
unsigned char i2c_readNak(void)
{
TWCR = (1<<TWINT) | (1<<TWEN);
while(!(TWCR & (1<<TWINT)));
return TWDR;
}/* i2c_readNak */

View file

@ -6,5 +6,8 @@
#ifdef SUBPROJECT_infinity
#include "infinity.h"
#endif
#ifdef SUBPROJECT_ergodone
#include "ergodone.h"
#endif
#endif /* KEYBOARDS_ERGODOX_ERGODOX_H_ */

View file

@ -145,6 +145,16 @@ You have a few options in how you flash the firmware:
any part of the firmware code itself, you can program only the MASTER half.
It is safest to program both halves though.
## ErgoDone
The ErgoDone uses its own HID bootloader and needs to be flashed using the [TKG Toolkit](https://github.com/kairyu/tkg-toolkit).
- Build the firmware with `make ergodone-keymapname`
- While plugging in the USB cable, hold the two right-most keys on the left half of the ErgoDone to enter FLASH mode.
- Use the utility from [TKG Toolkit](https://github.com/kairyu/tkg-toolkit) to flash the keyboard: `hid_bootloader_cli -mmcu=atmega32u4 ergodox_ergodone_keymapname.hex`
# Contributing your keymap
The QMK firmware is open-source, so it would be wonderful to have your contribution! Within a very short time after launching we already amassed dozens of user-contributed keymaps, with all sorts of creative improvements and tweaks. This is very valuable for people who aren't comfortable coding, but do want to customize their ErgoDox. To make it easy for these people to use your layout, I recommend submitting your PR in the following format.