From 5c7b37bbbde969eb056d531c897c1d5f80beeb58 Mon Sep 17 00:00:00 2001 From: Ryan Caltabiano Date: Wed, 15 May 2019 22:23:42 -0500 Subject: [PATCH] Added custom center point to rgb matrix --- docs/feature_rgb_matrix.md | 6 ++++-- quantum/rgb_matrix.c | 6 ++++++ quantum/rgb_matrix_animations/cycle_out_in_anim.h | 4 ++-- quantum/rgb_matrix_animations/cycle_out_in_dual_anim.h | 4 ++-- quantum/rgb_matrix_animations/dual_beacon_anim.h | 2 +- quantum/rgb_matrix_animations/rainbow_beacon_anim.h | 2 +- quantum/rgb_matrix_animations/rainbow_pinwheels_anim.h | 2 +- 7 files changed, 17 insertions(+), 9 deletions(-) diff --git a/docs/feature_rgb_matrix.md b/docs/feature_rgb_matrix.md index 18636776cd..8f0cd12b3c 100644 --- a/docs/feature_rgb_matrix.md +++ b/docs/feature_rgb_matrix.md @@ -144,14 +144,16 @@ const led_config_t g_led_config = { { } }; ``` -The first part, `// Key Matrix to LED Index`, tells the system what key this LED represents by using the key's electrical matrix row & col. The second part, `// LED Index to Physical Position` represents the LED's physical position on the keyboard. The first value, `x`, is between 0-224 (inclusive), and the second value, `y`, is between 0-64 (inclusive). This range is due to effect that calculate the center or halves for their animations. The easiest way to calculate these positions is imagine your keyboard is a grid, and the top left of the keyboard represents x, y coordinate 0, 0 and the bottom right of your keyboard represents 224, 64. Using this as a basis, you can use the following formula to calculate the physical position: +The first part, `// Key Matrix to LED Index`, tells the system what key this LED represents by using the key's electrical matrix row & col. The second part, `// LED Index to Physical Position` represents the LED's physical `{ x, y }` position on the keyboard. The default expected range of values for `{ x, y }` is the inclusive range `{ 0..224, 0..64 }`. This default expected range is due to effects that calculate the center of the keyboard for their animations. The easiest way to calculate these positions is imagine your keyboard is a grid, and the top left of the keyboard represents `{ x, y }` coordinate `{ 0, 0 }` and the bottom right of your keyboard represents `{ 224, 64 }`. Using this as a basis, you can use the following formula to calculate the physical position: ```C x = 224 / (NUMBER_OF_COLS - 1) * COL_POSITION y = 64 / (NUMBER_OF_ROWS - 1) * ROW_POSITION ``` -Where NUMBER_OF_COLS, NUMBER_OF_ROWS, COL_POSITION, & ROW_POSITION are all based on the physical layout of your keyboard, not the electrical layout. +Where NUMBER_OF_COLS, NUMBER_OF_ROWS, COL_POSITION, & ROW_POSITION are all based on the physical layout of your keyboard, not the electrical layout. + +As mentioned earlier, the center of the keyboard by default is expected to be `{ 112, 32 }`, but this can be changed if you want to more accurately calculate the LED's physical `{ x, y }` positions. Keyboard designers can implement `#define RGB_MATRIX_CENTER { 112, 32 }` in their config.h file with the new center point of the keyboard, or where they want it to be allowing more possibilities for the `{ x, y }` values. Do note that the maximum value for x or y is 255, and the recommended maximum is 224 as this gives animations runoff room before they reset. `// LED Index to Flag` is a bitmask, whether or not a certain LEDs is of a certain type. It is recommended that LEDs are set to only 1 type. diff --git a/quantum/rgb_matrix.c b/quantum/rgb_matrix.c index 9b9932df52..a6a9549af4 100644 --- a/quantum/rgb_matrix.c +++ b/quantum/rgb_matrix.c @@ -26,6 +26,12 @@ #include "lib/lib8tion/lib8tion.h" +#ifndef RGB_MATRIX_CENTER + const point_t k_rgb_matrix_center = { 112, 32 }; +#else + const point_t k_rgb_matrix_center = RGB_MATRIX_CENTER; +#endif + // ------------------------------------------ // -----Begin rgb effect includes macros----- #define RGB_MATRIX_EFFECT(name) diff --git a/quantum/rgb_matrix_animations/cycle_out_in_anim.h b/quantum/rgb_matrix_animations/cycle_out_in_anim.h index dc9d09fd3f..29209e4d7b 100644 --- a/quantum/rgb_matrix_animations/cycle_out_in_anim.h +++ b/quantum/rgb_matrix_animations/cycle_out_in_anim.h @@ -9,8 +9,8 @@ bool CYCLE_OUT_IN(effect_params_t* params) { uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4); for (uint8_t i = led_min; i < led_max; i++) { RGB_MATRIX_TEST_LED_FLAGS(); - int16_t dx = g_led_config.point[i].x - 112; - int16_t dy = g_led_config.point[i].y - 32; + int16_t dx = g_led_config.point[i].x - k_rgb_matrix_center.x; + int16_t dy = g_led_config.point[i].y - k_rgb_matrix_center.y; uint8_t dist = sqrt16(dx * dx + dy * dy); hsv.h = 3 * dist / 2 + time; RGB rgb = hsv_to_rgb(hsv); diff --git a/quantum/rgb_matrix_animations/cycle_out_in_dual_anim.h b/quantum/rgb_matrix_animations/cycle_out_in_dual_anim.h index 941e6b9a8a..b2f79ceea0 100644 --- a/quantum/rgb_matrix_animations/cycle_out_in_dual_anim.h +++ b/quantum/rgb_matrix_animations/cycle_out_in_dual_anim.h @@ -9,8 +9,8 @@ bool CYCLE_OUT_IN_DUAL(effect_params_t* params) { uint8_t time = scale16by8(g_rgb_counters.tick, rgb_matrix_config.speed / 4); for (uint8_t i = led_min; i < led_max; i++) { RGB_MATRIX_TEST_LED_FLAGS(); - int16_t dx = 56 - abs8(g_led_config.point[i].x - 112); - int16_t dy = g_led_config.point[i].y - 32; + int16_t dx = (k_rgb_matrix_center.x / 2) - abs8(g_led_config.point[i].x - k_rgb_matrix_center.x); + int16_t dy = g_led_config.point[i].y - k_rgb_matrix_center.y; uint8_t dist = sqrt16(dx * dx + dy * dy); hsv.h = 3 * dist + time; RGB rgb = hsv_to_rgb(hsv); diff --git a/quantum/rgb_matrix_animations/dual_beacon_anim.h b/quantum/rgb_matrix_animations/dual_beacon_anim.h index f853f71ecc..59c91046d4 100644 --- a/quantum/rgb_matrix_animations/dual_beacon_anim.h +++ b/quantum/rgb_matrix_animations/dual_beacon_anim.h @@ -11,7 +11,7 @@ bool DUAL_BEACON(effect_params_t* params) { int8_t sin_value = sin8(time) - 128; for (uint8_t i = led_min; i < led_max; i++) { RGB_MATRIX_TEST_LED_FLAGS(); - hsv.h = ((g_led_config.point[i].y - 32) * cos_value + (g_led_config.point[i].x - 112) * sin_value) / 128 + rgb_matrix_config.hue; + hsv.h = ((g_led_config.point[i].y - k_rgb_matrix_center.y) * cos_value + (g_led_config.point[i].x - k_rgb_matrix_center.x) * sin_value) / 128 + rgb_matrix_config.hue; RGB rgb = hsv_to_rgb(hsv); rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b); } diff --git a/quantum/rgb_matrix_animations/rainbow_beacon_anim.h b/quantum/rgb_matrix_animations/rainbow_beacon_anim.h index a0e0f814c5..564e3c480a 100644 --- a/quantum/rgb_matrix_animations/rainbow_beacon_anim.h +++ b/quantum/rgb_matrix_animations/rainbow_beacon_anim.h @@ -11,7 +11,7 @@ bool RAINBOW_BEACON(effect_params_t* params) { int16_t sin_value = 2 * (sin8(time) - 128); for (uint8_t i = led_min; i < led_max; i++) { RGB_MATRIX_TEST_LED_FLAGS(); - hsv.h = ((g_led_config.point[i].y - 32) * cos_value + (g_led_config.point[i].x - 112) * sin_value) / 128 + rgb_matrix_config.hue; + hsv.h = ((g_led_config.point[i].y - k_rgb_matrix_center.y) * cos_value + (g_led_config.point[i].x - k_rgb_matrix_center.x) * sin_value) / 128 + rgb_matrix_config.hue; RGB rgb = hsv_to_rgb(hsv); rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b); } diff --git a/quantum/rgb_matrix_animations/rainbow_pinwheels_anim.h b/quantum/rgb_matrix_animations/rainbow_pinwheels_anim.h index 275aaa48d9..7d189b927b 100644 --- a/quantum/rgb_matrix_animations/rainbow_pinwheels_anim.h +++ b/quantum/rgb_matrix_animations/rainbow_pinwheels_anim.h @@ -11,7 +11,7 @@ bool PINWHEELS(effect_params_t* params) { int16_t sin_value = 3 * (sin8(time) - 128); for (uint8_t i = led_min; i < led_max; i++) { RGB_MATRIX_TEST_LED_FLAGS(); - hsv.h = ((g_led_config.point[i].y - 32) * cos_value + (56 - abs8(g_led_config.point[i].x - 112)) * sin_value) / 128 + rgb_matrix_config.hue; + hsv.h = ((g_led_config.point[i].y - k_rgb_matrix_center.y) * cos_value + (56 - abs8(g_led_config.point[i].x - k_rgb_matrix_center.x)) * sin_value) / 128 + rgb_matrix_config.hue; RGB rgb = hsv_to_rgb(hsv); rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b); }