1
0
Fork 0

Dual RGB Matrix IS31FL3737 driver support to address #13442 (#13457)

* initial commit

* removed changes to write_pwm_buffer

* backward compatbility added

* fixed issue with backward compatibility

* documentation update

* removed unneccessary comment. branched from master

* updated per comments #13457

* removed blank line

* cformat on diff files
This commit is contained in:
Chris Cullin 2021-07-16 07:52:05 +10:00 committed by GitHub
parent e07401bb5a
commit 70267b35c3
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 55 additions and 30 deletions

View file

@ -145,9 +145,22 @@ There is basic support for addressable RGB matrix lighting with the I2C IS31FL37
RGB_MATRIX_ENABLE = yes RGB_MATRIX_ENABLE = yes
RGB_MATRIX_DRIVER = IS31FL3737 RGB_MATRIX_DRIVER = IS31FL3737
``` ```
You can use between 1 and 2 IS31FL3737 IC's. Do not specify `DRIVER_ADDR_2` define for second IC if not present on your keyboard.
Configure the hardware via your `config.h`: Configure the hardware via your `config.h`:
| Variable | Description | Default |
|----------|-------------|---------|
| `ISSI_TIMEOUT` | (Optional) How long to wait for i2c messages, in milliseconds | 100 |
| `ISSI_PERSISTENCE` | (Optional) Retry failed messages this many times | 0 |
| `DRIVER_COUNT` | (Required) How many RGB driver IC's are present | |
| `DRIVER_LED_TOTAL` | (Required) How many RGB lights are present across all drivers | |
| `DRIVER_ADDR_1` | (Required) Address for the first RGB driver | |
| `DRIVER_ADDR_2` | (Optional) Address for the second RGB driver | |
Here is an example using 2 drivers.
```c ```c
// This is a 7-bit address, that gets left-shifted and bit 0 // This is a 7-bit address, that gets left-shifted and bit 0
// set to 0 for write, 1 for read (as per I2C protocol) // set to 0 for write, 1 for read (as per I2C protocol)
@ -159,14 +172,16 @@ Configure the hardware via your `config.h`:
// ADDR represents A3:A0 of the 7-bit address. // ADDR represents A3:A0 of the 7-bit address.
// The result is: 0b101(ADDR) // The result is: 0b101(ADDR)
#define DRIVER_ADDR_1 0b1010000 #define DRIVER_ADDR_1 0b1010000
#define DRIVER_ADDR_2 0b1010000 // this is here for compliancy reasons. #define DRIVER_ADDR_2 0b1010001
#define DRIVER_COUNT 2 #define DRIVER_COUNT 2
#define DRIVER_1_LED_TOTAL 64 #define DRIVER_1_LED_TOTAL 30
#define DRIVER_LED_TOTAL DRIVER_1_LED_TOTAL #define DRIVER_2_LED_TOTAL 36
#define DRIVER_LED_TOTAL (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL)
``` ```
!> Note the parentheses, this is so when `DRIVER_LED_TOTAL` is used in code and expanded, the values are added together before any additional math is applied to them. As an example, `rand() % (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL)` will give very different results than `rand() % DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL`.
Currently only a single drivers is supported, but it would be trivial to support all 4 combinations. For now define `DRIVER_ADDR_2` as `DRIVER_ADDR_1` Currently only 2 drivers are supported, but it would be trivial to support all 4 combinations.
Define these arrays listing all the LEDs in your `<keyboard>.c`: Define these arrays listing all the LEDs in your `<keyboard>.c`:
@ -183,7 +198,7 @@ const is31_led PROGMEM g_is31_leds[DRIVER_LED_TOTAL] = {
} }
``` ```
Where `X_Y` is the location of the LED in the matrix defined by [the datasheet](https://www.issi.com/WW/pdf/31FL3737.pdf) and the header file `drivers/issi/is31fl3737.h`. The `driver` is the index of the driver you defined in your `config.h` (Only `0` right now). Where `X_Y` is the location of the LED in the matrix defined by [the datasheet](https://www.issi.com/WW/pdf/31FL3737.pdf) and the header file `drivers/issi/is31fl3737.h`. The `driver` is the index of the driver you defined in your `config.h` (Only `0`, `1` for now).
--- ---

View file

@ -66,11 +66,12 @@ uint8_t g_twi_transfer_buffer[20];
// We could optimize this and take out the unused registers from these // We could optimize this and take out the unused registers from these
// buffers and the transfers in IS31FL3737_write_pwm_buffer() but it's // buffers and the transfers in IS31FL3737_write_pwm_buffer() but it's
// probably not worth the extra complexity. // probably not worth the extra complexity.
uint8_t g_pwm_buffer[DRIVER_COUNT][192];
bool g_pwm_buffer_update_required = false;
uint8_t g_led_control_registers[DRIVER_COUNT][24] = {{0}}; uint8_t g_pwm_buffer[DRIVER_COUNT][192];
bool g_led_control_registers_update_required = false; bool g_pwm_buffer_update_required[DRIVER_COUNT] = {false};
uint8_t g_led_control_registers[DRIVER_COUNT][24] = {0};
bool g_led_control_registers_update_required[DRIVER_COUNT] = {false};
void IS31FL3737_write_register(uint8_t addr, uint8_t reg, uint8_t data) { void IS31FL3737_write_register(uint8_t addr, uint8_t reg, uint8_t data) {
g_twi_transfer_buffer[0] = reg; g_twi_transfer_buffer[0] = reg;
@ -158,10 +159,10 @@ void IS31FL3737_set_color(int index, uint8_t red, uint8_t green, uint8_t blue) {
is31_led led; is31_led led;
memcpy_P(&led, (&g_is31_leds[index]), sizeof(led)); memcpy_P(&led, (&g_is31_leds[index]), sizeof(led));
g_pwm_buffer[led.driver][led.r] = red; g_pwm_buffer[led.driver][led.r] = red;
g_pwm_buffer[led.driver][led.g] = green; g_pwm_buffer[led.driver][led.g] = green;
g_pwm_buffer[led.driver][led.b] = blue; g_pwm_buffer[led.driver][led.b] = blue;
g_pwm_buffer_update_required = true; g_pwm_buffer_update_required[led.driver] = true;
} }
} }
@ -199,30 +200,28 @@ void IS31FL3737_set_led_control_register(uint8_t index, bool red, bool green, bo
g_led_control_registers[led.driver][control_register_b] &= ~(1 << bit_b); g_led_control_registers[led.driver][control_register_b] &= ~(1 << bit_b);
} }
g_led_control_registers_update_required = true; g_led_control_registers_update_required[led.driver] = true;
} }
void IS31FL3737_update_pwm_buffers(uint8_t addr1, uint8_t addr2) { void IS31FL3737_update_pwm_buffers(uint8_t addr, uint8_t index) {
if (g_pwm_buffer_update_required) { if (g_pwm_buffer_update_required[index]) {
// Firstly we need to unlock the command register and select PG1 // Firstly we need to unlock the command register and select PG1
IS31FL3737_write_register(addr1, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5); IS31FL3737_write_register(addr, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5);
IS31FL3737_write_register(addr1, ISSI_COMMANDREGISTER, ISSI_PAGE_PWM); IS31FL3737_write_register(addr, ISSI_COMMANDREGISTER, ISSI_PAGE_PWM);
IS31FL3737_write_pwm_buffer(addr1, g_pwm_buffer[0]); IS31FL3737_write_pwm_buffer(addr, g_pwm_buffer[index]);
// IS31FL3737_write_pwm_buffer(addr2, g_pwm_buffer[1]);
} }
g_pwm_buffer_update_required = false; g_pwm_buffer_update_required[index] = false;
} }
void IS31FL3737_update_led_control_registers(uint8_t addr1, uint8_t addr2) { void IS31FL3737_update_led_control_registers(uint8_t addr, uint8_t index) {
if (g_led_control_registers_update_required) { if (g_led_control_registers_update_required[index]) {
// Firstly we need to unlock the command register and select PG0 // Firstly we need to unlock the command register and select PG0
IS31FL3737_write_register(addr1, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5); IS31FL3737_write_register(addr, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5);
IS31FL3737_write_register(addr1, ISSI_COMMANDREGISTER, ISSI_PAGE_LEDCONTROL); IS31FL3737_write_register(addr, ISSI_COMMANDREGISTER, ISSI_PAGE_LEDCONTROL);
for (int i = 0; i < 24; i++) { for (int i = 0; i < 24; i++) {
IS31FL3737_write_register(addr1, i, g_led_control_registers[0][i]); IS31FL3737_write_register(addr, i, g_led_control_registers[index][i]);
// IS31FL3737_write_register(addr2, i, g_led_control_registers[1][i]);
} }
g_led_control_registers_update_required = false;
} }
g_led_control_registers_update_required[index] = false;
} }

View file

@ -65,6 +65,9 @@ static void init(void) {
# endif # endif
# elif defined(IS31FL3737) # elif defined(IS31FL3737)
IS31FL3737_init(DRIVER_ADDR_1); IS31FL3737_init(DRIVER_ADDR_1);
# if defined(DRIVER_ADDR_2) && (DRIVER_ADDR_2 != DRIVER_ADDR_1) // provides backward compatibility
IS31FL3737_init(DRIVER_ADDR_2);
# endif
# else # else
IS31FL3741_init(DRIVER_ADDR_1); IS31FL3741_init(DRIVER_ADDR_1);
# endif # endif
@ -105,7 +108,10 @@ static void init(void) {
IS31FL3733_update_led_control_registers(DRIVER_ADDR_4, 3); IS31FL3733_update_led_control_registers(DRIVER_ADDR_4, 3);
# endif # endif
# elif defined(IS31FL3737) # elif defined(IS31FL3737)
IS31FL3737_update_led_control_registers(DRIVER_ADDR_1, DRIVER_ADDR_2); IS31FL3737_update_led_control_registers(DRIVER_ADDR_1, 0);
# if defined(DRIVER_ADDR_2) && (DRIVER_ADDR_2 != DRIVER_ADDR_1) // provides backward compatibility
IS31FL3737_update_led_control_registers(DRIVER_ADDR_2, 1);
# endif
# else # else
IS31FL3741_update_led_control_registers(DRIVER_ADDR_1, 0); IS31FL3741_update_led_control_registers(DRIVER_ADDR_1, 0);
# endif # endif
@ -152,7 +158,12 @@ const rgb_matrix_driver_t rgb_matrix_driver = {
.set_color_all = IS31FL3733_set_color_all, .set_color_all = IS31FL3733_set_color_all,
}; };
# elif defined(IS31FL3737) # elif defined(IS31FL3737)
static void flush(void) { IS31FL3737_update_pwm_buffers(DRIVER_ADDR_1, DRIVER_ADDR_2); } static void flush(void) {
IS31FL3737_update_pwm_buffers(DRIVER_ADDR_1, 0);
# if defined(DRIVER_ADDR_2) && (DRIVER_ADDR_2 != DRIVER_ADDR_1) // provides backward compatibility
IS31FL3737_update_pwm_buffers(DRIVER_ADDR_2, 1);
# endif
}
const rgb_matrix_driver_t rgb_matrix_driver = { const rgb_matrix_driver_t rgb_matrix_driver = {
.init = init, .init = init,