1
0
Fork 0

Add support for ISSI drivers on both sides of a split keyboard (#13842)

* Gets RGB working on a split keyboard with IS31FL3733. Currently needs small tweak to re-enable WS2812

* Added helper function

* Trying to integrate the function

* Moved functionality into a macro

* Swapped conditional for a macro everywhere

* Tidying up

* More code cleanup

* Documentation updates

* Fixed formatting via linter

* Switching to a function from a macro

* Fixed compile error

* Fixing WS2812 behavior. UNTESTED.

* Updated documentation about the driver addresses.

* Fixed code for WS2812

* Trying to add in LED_MATRIX support

* Updated effects for LED matrix

* Updated third-party effect defines.

* Ran format-c on modified files

* Apply suggestions from code review

Co-authored-by: Ryan <fauxpark@gmail.com>

* Move to static inline. Avoids issues with gcc v8+

* Move helper function for LED_matrix to static inline to avoid issues with gcc v8+

Co-authored-by: Vlad Kvitnevskiy <vladkvit@outlook.com>
Co-authored-by: Ryan <fauxpark@gmail.com>
This commit is contained in:
Vlad K 2021-11-01 15:04:37 -07:00 committed by GitHub
parent 7f8faa429e
commit a29ca1e7f1
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
33 changed files with 127 additions and 72 deletions

View file

@ -49,6 +49,8 @@ Here is an example using 2 drivers.
!> Note the parentheses, this is so when `LED_DRIVER_LED_TOTAL` is used in code and expanded, the values are added together before any additional math is applied to them. As an example, `rand() % (LED_DRIVER_1_LED_TOTAL + LED_DRIVER_2_LED_TOTAL)` will give very different results than `rand() % LED_DRIVER_1_LED_TOTAL + LED_DRIVER_2_LED_TOTAL`. !> Note the parentheses, this is so when `LED_DRIVER_LED_TOTAL` is used in code and expanded, the values are added together before any additional math is applied to them. As an example, `rand() % (LED_DRIVER_1_LED_TOTAL + LED_DRIVER_2_LED_TOTAL)` will give very different results than `rand() % LED_DRIVER_1_LED_TOTAL + LED_DRIVER_2_LED_TOTAL`.
For split keyboards using `LED_MATRIX_SPLIT` with an LED driver, you can either have the same driver address or different driver addresses. If using different addresses, use `DRIVER_ADDR_1` for one and `DRIVER_ADDR_2` for the other one. Then, in `g_is31_leds`, fill out the correct driver index (0 or 1). If using one address, use `DRIVER_ADDR_1` for both, and use index 0 for `g_is31_leds`.
Define these arrays listing all the LEDs in your `<keyboard>.c`: Define these arrays listing all the LEDs in your `<keyboard>.c`:
```c ```c
@ -219,7 +221,7 @@ static bool my_cool_effect(effect_params_t* params) {
for (uint8_t i = led_min; i < led_max; i++) { for (uint8_t i = led_min; i < led_max; i++) {
led_matrix_set_value(i, 0xFF); led_matrix_set_value(i, 0xFF);
} }
return led_max < DRIVER_LED_TOTAL; return led_matrix_check_finished_leds(led_max);
} }
// e.g: A more complex effect, relying on external methods and state, with // e.g: A more complex effect, relying on external methods and state, with
@ -233,8 +235,7 @@ static bool my_cool_effect2_complex_run(effect_params_t* params) {
for (uint8_t i = led_min; i < led_max; i++) { for (uint8_t i = led_min; i < led_max; i++) {
led_matrix_set_value(i, some_global_state++); led_matrix_set_value(i, some_global_state++);
} }
return led_matrix_check_finished_leds(led_max);
return led_max < DRIVER_LED_TOTAL;
} }
static bool my_cool_effect2(effect_params_t* params) { static bool my_cool_effect2(effect_params_t* params) {
if (params->init) my_cool_effect2_complex_init(params); if (params->init) my_cool_effect2_complex_init(params);

View file

@ -49,6 +49,8 @@ Here is an example using 2 drivers.
!> Note the parentheses, this is so when `DRIVER_LED_TOTAL` is used in code and expanded, the values are added together before any additional math is applied to them. As an example, `rand() % (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL)` will give very different results than `rand() % DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL`. !> Note the parentheses, this is so when `DRIVER_LED_TOTAL` is used in code and expanded, the values are added together before any additional math is applied to them. As an example, `rand() % (DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL)` will give very different results than `rand() % DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL`.
For split keyboards using `RGB_MATRIX_SPLIT` with an LED driver, you can either have the same driver address or different driver addresses. If using different addresses, use `DRIVER_ADDR_1` for one and `DRIVER_ADDR_2` for the other one. Then, in `g_is31_leds`, fill out the correct driver index (0 or 1). If using one address, use `DRIVER_ADDR_1` for both, and use index 0 for `g_is31_leds`.
Define these arrays listing all the LEDs in your `<keyboard>.c`: Define these arrays listing all the LEDs in your `<keyboard>.c`:
```c ```c
@ -540,7 +542,7 @@ static bool my_cool_effect(effect_params_t* params) {
for (uint8_t i = led_min; i < led_max; i++) { for (uint8_t i = led_min; i < led_max; i++) {
rgb_matrix_set_color(i, 0xff, 0xff, 0x00); rgb_matrix_set_color(i, 0xff, 0xff, 0x00);
} }
return led_max < DRIVER_LED_TOTAL; return rgb_matrix_check_finished_leds(led_max);
} }
// e.g: A more complex effect, relying on external methods and state, with // e.g: A more complex effect, relying on external methods and state, with
@ -554,8 +556,7 @@ static bool my_cool_effect2_complex_run(effect_params_t* params) {
for (uint8_t i = led_min; i < led_max; i++) { for (uint8_t i = led_min; i < led_max; i++) {
rgb_matrix_set_color(i, 0xff, some_global_state++, 0xff); rgb_matrix_set_color(i, 0xff, some_global_state++, 0xff);
} }
return rgb_matrix_check_finished_leds(led_max);
return led_max < DRIVER_LED_TOTAL;
} }
static bool my_cool_effect2(effect_params_t* params) { static bool my_cool_effect2(effect_params_t* params) {
if (params->init) my_cool_effect2_complex_init(params); if (params->init) my_cool_effect2_complex_init(params);

View file

@ -9,7 +9,7 @@ bool my_party_rocks(effect_params_t* params) {
RGB rgb = rgb_matrix_hsv_to_rgb(hsv); RGB rgb = rgb_matrix_hsv_to_rgb(hsv);
// rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b); // rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
rgb_matrix_set_color_all(rgb.r, rgb.g, rgb.b); rgb_matrix_set_color_all(rgb.r, rgb.g, rgb.b);
return led_max < DRIVER_LED_TOTAL; return rgb_matrix_check_finished_leds(led_max);
} }
# endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS # endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

View file

@ -25,13 +25,13 @@ static bool indicator_static(effect_params_t* params) {
HSV hsv = rgb_matrix_config.hsv; HSV hsv = rgb_matrix_config.hsv;
RGB rgb = hsv_to_rgb(hsv); RGB rgb = hsv_to_rgb(hsv);
RGB_MATRIX_USE_LIMITS(led_min, led_max); RGB_MATRIX_USE_LIMITS(led_min, led_max);
for (uint8_t i = led_min ; i < 74; i++) { for (uint8_t i = led_min; i < 74; i++) {
rgb_matrix_set_color(i, 0x00, 0x00, 0x00); rgb_matrix_set_color(i, 0x00, 0x00, 0x00);
} }
for (uint8_t i = 74 ; i < led_max; i++) { for (uint8_t i = 74; i < led_max; i++) {
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b); rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
} }
return led_max < DRIVER_LED_TOTAL; return rgb_matrix_check_finished_leds(led_max);
} }
bool effect_runner_indicator(effect_params_t* params, i_f effect_func) { bool effect_runner_indicator(effect_params_t* params, i_f effect_func) {
@ -47,7 +47,7 @@ bool effect_runner_indicator(effect_params_t* params, i_f effect_func) {
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b); rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
} }
} }
return led_max < DRIVER_LED_TOTAL; return rgb_matrix_check_finished_leds(led_max);
} }
static HSV indicator_gradient_math(HSV hsv, uint8_t i, uint8_t time) { static HSV indicator_gradient_math(HSV hsv, uint8_t i, uint8_t time) {

View file

@ -111,7 +111,7 @@ static bool quick17_rgbm_effect (effect_params_t* params) {
led_color_set(i, rgb_keymaps[_CONTROL][i]); led_color_set(i, rgb_keymaps[_CONTROL][i]);
} }
} }
return led_max < DRIVER_LED_TOTAL; return rgb_matrix_check_finished_leds(led_max);
} }
#endif #endif

View file

@ -17,7 +17,7 @@ bool ALPHAS_MODS(effect_params_t* params) {
led_matrix_set_value(i, val1); led_matrix_set_value(i, val1);
} }
} }
return led_max < DRIVER_LED_TOTAL; return led_matrix_check_finished_leds(led_max);
} }
# endif // LED_MATRIX_CUSTOM_EFFECT_IMPLS # endif // LED_MATRIX_CUSTOM_EFFECT_IMPLS

View file

@ -12,7 +12,7 @@ bool BREATHING(effect_params_t* params) {
LED_MATRIX_TEST_LED_FLAGS(); LED_MATRIX_TEST_LED_FLAGS();
led_matrix_set_value(i, val); led_matrix_set_value(i, val);
} }
return led_max < DRIVER_LED_TOTAL; return led_matrix_check_finished_leds(led_max);
} }
# endif // LED_MATRIX_CUSTOM_EFFECT_IMPLS # endif // LED_MATRIX_CUSTOM_EFFECT_IMPLS

View file

@ -12,5 +12,5 @@ bool effect_runner_dx_dy(effect_params_t* params, dx_dy_f effect_func) {
int16_t dy = g_led_config.point[i].y - k_led_matrix_center.y; int16_t dy = g_led_config.point[i].y - k_led_matrix_center.y;
led_matrix_set_value(i, effect_func(led_matrix_eeconfig.val, dx, dy, time)); led_matrix_set_value(i, effect_func(led_matrix_eeconfig.val, dx, dy, time));
} }
return led_max < DRIVER_LED_TOTAL; return led_matrix_check_finished_leds(led_max);
} }

View file

@ -13,5 +13,5 @@ bool effect_runner_dx_dy_dist(effect_params_t* params, dx_dy_dist_f effect_func)
uint8_t dist = sqrt16(dx * dx + dy * dy); uint8_t dist = sqrt16(dx * dx + dy * dy);
led_matrix_set_value(i, effect_func(led_matrix_eeconfig.val, dx, dy, dist, time)); led_matrix_set_value(i, effect_func(led_matrix_eeconfig.val, dx, dy, dist, time));
} }
return led_max < DRIVER_LED_TOTAL; return led_matrix_check_finished_leds(led_max);
} }

View file

@ -10,5 +10,5 @@ bool effect_runner_i(effect_params_t* params, i_f effect_func) {
LED_MATRIX_TEST_LED_FLAGS(); LED_MATRIX_TEST_LED_FLAGS();
led_matrix_set_value(i, effect_func(led_matrix_eeconfig.val, i, time)); led_matrix_set_value(i, effect_func(led_matrix_eeconfig.val, i, time));
} }
return led_max < DRIVER_LED_TOTAL; return led_matrix_check_finished_leds(led_max);
} }

View file

@ -22,7 +22,7 @@ bool effect_runner_reactive(effect_params_t* params, reactive_f effect_func) {
uint16_t offset = scale16by8(tick, led_matrix_eeconfig.speed); uint16_t offset = scale16by8(tick, led_matrix_eeconfig.speed);
led_matrix_set_value(i, effect_func(led_matrix_eeconfig.val, offset)); led_matrix_set_value(i, effect_func(led_matrix_eeconfig.val, offset));
} }
return led_max < DRIVER_LED_TOTAL; return led_matrix_check_finished_leds(led_max);
} }
#endif // LED_MATRIX_KEYREACTIVE_ENABLED #endif // LED_MATRIX_KEYREACTIVE_ENABLED

View file

@ -20,7 +20,7 @@ bool effect_runner_reactive_splash(uint8_t start, effect_params_t* params, react
} }
led_matrix_set_value(i, scale8(val, led_matrix_eeconfig.val)); led_matrix_set_value(i, scale8(val, led_matrix_eeconfig.val));
} }
return led_max < DRIVER_LED_TOTAL; return led_matrix_check_finished_leds(led_max);
} }
#endif // LED_MATRIX_KEYREACTIVE_ENABLED #endif // LED_MATRIX_KEYREACTIVE_ENABLED

View file

@ -12,5 +12,5 @@ bool effect_runner_sin_cos_i(effect_params_t* params, sin_cos_i_f effect_func) {
LED_MATRIX_TEST_LED_FLAGS(); LED_MATRIX_TEST_LED_FLAGS();
led_matrix_set_value(i, effect_func(led_matrix_eeconfig.val, cos_value, sin_value, i, time)); led_matrix_set_value(i, effect_func(led_matrix_eeconfig.val, cos_value, sin_value, i, time));
} }
return led_max < DRIVER_LED_TOTAL; return led_matrix_check_finished_leds(led_max);
} }

View file

@ -9,7 +9,7 @@ bool SOLID(effect_params_t* params) {
LED_MATRIX_TEST_LED_FLAGS(); LED_MATRIX_TEST_LED_FLAGS();
led_matrix_set_value(i, val); led_matrix_set_value(i, val);
} }
return led_max < DRIVER_LED_TOTAL; return led_matrix_check_finished_leds(led_max);
} }
#endif // LED_MATRIX_CUSTOM_EFFECT_IMPLS #endif // LED_MATRIX_CUSTOM_EFFECT_IMPLS

View file

@ -156,20 +156,10 @@ uint8_t led_matrix_map_row_column_to_led(uint8_t row, uint8_t column, uint8_t *l
void led_matrix_update_pwm_buffers(void) { led_matrix_driver.flush(); } void led_matrix_update_pwm_buffers(void) { led_matrix_driver.flush(); }
void led_matrix_set_value(int index, uint8_t value) { void led_matrix_set_value(int index, uint8_t value) {
#if defined(LED_MATRIX_ENABLE) && defined(LED_MATRIX_SPLIT)
if (!is_keyboard_left() && index >= k_led_matrix_split[0])
# ifdef USE_CIE1931_CURVE
led_matrix_driver.set_value(index - k_led_matrix_split[0], pgm_read_byte(&CIE1931_CURVE[value]));
# else
led_matrix_driver.set_value(index - k_led_matrix_split[0], value);
# endif
else if (is_keyboard_left() && index < k_led_matrix_split[0])
#endif
#ifdef USE_CIE1931_CURVE #ifdef USE_CIE1931_CURVE
led_matrix_driver.set_value(index, pgm_read_byte(&CIE1931_CURVE[value])); value = pgm_read_byte(&CIE1931_CURVE[value]);
#else
led_matrix_driver.set_value(index, value);
#endif #endif
led_matrix_driver.set_value(index, value);
} }
void led_matrix_set_value_all(uint8_t value) { void led_matrix_set_value_all(uint8_t value) {

View file

@ -38,14 +38,33 @@
#endif #endif
#if defined(LED_MATRIX_LED_PROCESS_LIMIT) && LED_MATRIX_LED_PROCESS_LIMIT > 0 && LED_MATRIX_LED_PROCESS_LIMIT < DRIVER_LED_TOTAL #if defined(LED_MATRIX_LED_PROCESS_LIMIT) && LED_MATRIX_LED_PROCESS_LIMIT > 0 && LED_MATRIX_LED_PROCESS_LIMIT < DRIVER_LED_TOTAL
# if defined(LED_MATRIX_SPLIT)
# define LED_MATRIX_USE_LIMITS(min, max)
uint8_t min = LED_MATRIX_LED_PROCESS_LIMIT * params->iter;
uint8_t max = min + LED_MATRIX_LED_PROCESS_LIMIT;
if (max > DRIVER_LED_TOTAL) max = DRIVER_LED_TOTAL;
uint8_t k_led_matrix_split[2] = LED_MATRIX_SPLIT;
if (is_keyboard_left() && (max > k_led_matrix_split[0])) max = k_led_matrix_split[0];
if (!(is_keyboard_left()) && (min < k_led_matrix_split[0])) min = k_led_matrix_split[0];
# else
# define LED_MATRIX_USE_LIMITS(min, max) \ # define LED_MATRIX_USE_LIMITS(min, max) \
uint8_t min = LED_MATRIX_LED_PROCESS_LIMIT * params->iter; \ uint8_t min = LED_MATRIX_LED_PROCESS_LIMIT * params->iter; \
uint8_t max = min + LED_MATRIX_LED_PROCESS_LIMIT; \ uint8_t max = min + LED_MATRIX_LED_PROCESS_LIMIT; \
if (max > DRIVER_LED_TOTAL) max = DRIVER_LED_TOTAL; if (max > DRIVER_LED_TOTAL) max = DRIVER_LED_TOTAL;
# endif
#else #else
# if defined(LED_MATRIX_SPLIT)
# define LED_MATRIX_USE_LIMITS(min, max) \
uint8_t min = 0; \
uint8_t max = DRIVER_LED_TOTAL; \
const uint8_t k_led_matrix_split[2] = LED_MATRIX_SPLIT; \
if (is_keyboard_left() && (max > k_led_matrix_split[0])) max = k_led_matrix_split[0]; \
if (!(is_keyboard_left()) && (min < k_led_matrix_split[0])) min = k_led_matrix_split[0];
# else
# define LED_MATRIX_USE_LIMITS(min, max) \ # define LED_MATRIX_USE_LIMITS(min, max) \
uint8_t min = 0; \ uint8_t min = 0; \
uint8_t max = DRIVER_LED_TOTAL; uint8_t max = DRIVER_LED_TOTAL;
# endif
#endif #endif
#define LED_MATRIX_TEST_LED_FLAGS() \ #define LED_MATRIX_TEST_LED_FLAGS() \
@ -147,6 +166,18 @@ typedef struct {
void (*flush)(void); void (*flush)(void);
} led_matrix_driver_t; } led_matrix_driver_t;
static inline bool led_matrix_check_finished_leds(uint8_t led_idx) {
#if defined(LED_MATRIX_SPLIT)
if (is_keyboard_left()) {
uint8_t k_led_matrix_split[2] = LED_MATRIX_SPLIT;
return led_idx < k_led_matrix_split[0];
} else
return led_idx < DRIVER_LED_TOTAL;
#else
return led_idx < DRIVER_LED_TOTAL;
#endif
}
extern const led_matrix_driver_t led_matrix_driver; extern const led_matrix_driver_t led_matrix_driver;
extern led_eeconfig_t led_matrix_eeconfig; extern led_eeconfig_t led_matrix_eeconfig;

View file

@ -19,7 +19,7 @@ bool ALPHAS_MODS(effect_params_t* params) {
rgb_matrix_set_color(i, rgb1.r, rgb1.g, rgb1.b); rgb_matrix_set_color(i, rgb1.r, rgb1.g, rgb1.b);
} }
} }
return led_max < DRIVER_LED_TOTAL; return rgb_matrix_check_finished_leds(led_max);
} }
# endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS # endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

View file

@ -13,7 +13,7 @@ bool BREATHING(effect_params_t* params) {
RGB_MATRIX_TEST_LED_FLAGS(); RGB_MATRIX_TEST_LED_FLAGS();
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b); rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
} }
return led_max < DRIVER_LED_TOTAL; return rgb_matrix_check_finished_leds(led_max);
} }
# endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS # endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

View file

@ -15,7 +15,7 @@ bool GRADIENT_LEFT_RIGHT(effect_params_t* params) {
RGB rgb = rgb_matrix_hsv_to_rgb(hsv); RGB rgb = rgb_matrix_hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b); rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
} }
return led_max < DRIVER_LED_TOTAL; return rgb_matrix_check_finished_leds(led_max);
} }
# endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS # endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

View file

@ -15,7 +15,7 @@ bool GRADIENT_UP_DOWN(effect_params_t* params) {
RGB rgb = rgb_matrix_hsv_to_rgb(hsv); RGB rgb = rgb_matrix_hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b); rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
} }
return led_max < DRIVER_LED_TOTAL; return rgb_matrix_check_finished_leds(led_max);
} }
# endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS # endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

View file

@ -15,7 +15,7 @@ bool HUE_BREATHING(effect_params_t* params) {
RGB_MATRIX_TEST_LED_FLAGS(); RGB_MATRIX_TEST_LED_FLAGS();
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b); rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
} }
return led_max < DRIVER_LED_TOTAL; return rgb_matrix_check_finished_leds(led_max);
} }
# endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS # endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

View file

@ -22,7 +22,7 @@ bool JELLYBEAN_RAINDROPS(effect_params_t* params) {
for (int i = led_min; i < led_max; i++) { for (int i = led_min; i < led_max; i++) {
jellybean_raindrops_set_color(i, params); jellybean_raindrops_set_color(i, params);
} }
return led_max < DRIVER_LED_TOTAL; return rgb_matrix_check_finished_leds(led_max);
} }
# endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS # endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

View file

@ -32,7 +32,7 @@ bool RAINDROPS(effect_params_t* params) {
for (int i = led_min; i < led_max; i++) { for (int i = led_min; i < led_max; i++) {
raindrops_set_color(i, params); raindrops_set_color(i, params);
} }
return led_max < DRIVER_LED_TOTAL; return rgb_matrix_check_finished_leds(led_max);
} }
# endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS # endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

View file

@ -13,5 +13,5 @@ bool effect_runner_dx_dy(effect_params_t* params, dx_dy_f effect_func) {
RGB rgb = rgb_matrix_hsv_to_rgb(effect_func(rgb_matrix_config.hsv, dx, dy, time)); RGB rgb = rgb_matrix_hsv_to_rgb(effect_func(rgb_matrix_config.hsv, dx, dy, time));
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b); rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
} }
return led_max < DRIVER_LED_TOTAL; return rgb_matrix_check_finished_leds(led_max);
} }

View file

@ -14,5 +14,5 @@ bool effect_runner_dx_dy_dist(effect_params_t* params, dx_dy_dist_f effect_func)
RGB rgb = rgb_matrix_hsv_to_rgb(effect_func(rgb_matrix_config.hsv, dx, dy, dist, time)); RGB rgb = rgb_matrix_hsv_to_rgb(effect_func(rgb_matrix_config.hsv, dx, dy, dist, time));
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b); rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
} }
return led_max < DRIVER_LED_TOTAL; return rgb_matrix_check_finished_leds(led_max);
} }

View file

@ -11,5 +11,5 @@ bool effect_runner_i(effect_params_t* params, i_f effect_func) {
RGB rgb = rgb_matrix_hsv_to_rgb(effect_func(rgb_matrix_config.hsv, i, time)); RGB rgb = rgb_matrix_hsv_to_rgb(effect_func(rgb_matrix_config.hsv, i, time));
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b); rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
} }
return led_max < DRIVER_LED_TOTAL; return rgb_matrix_check_finished_leds(led_max);
} }

View file

@ -23,7 +23,7 @@ bool effect_runner_reactive(effect_params_t* params, reactive_f effect_func) {
RGB rgb = rgb_matrix_hsv_to_rgb(effect_func(rgb_matrix_config.hsv, offset)); RGB rgb = rgb_matrix_hsv_to_rgb(effect_func(rgb_matrix_config.hsv, offset));
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b); rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
} }
return led_max < DRIVER_LED_TOTAL; return rgb_matrix_check_finished_leds(led_max);
} }
#endif // RGB_MATRIX_KEYREACTIVE_ENABLED #endif // RGB_MATRIX_KEYREACTIVE_ENABLED

View file

@ -23,7 +23,7 @@ bool effect_runner_reactive_splash(uint8_t start, effect_params_t* params, react
RGB rgb = rgb_matrix_hsv_to_rgb(hsv); RGB rgb = rgb_matrix_hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b); rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
} }
return led_max < DRIVER_LED_TOTAL; return rgb_matrix_check_finished_leds(led_max);
} }
#endif // RGB_MATRIX_KEYREACTIVE_ENABLED #endif // RGB_MATRIX_KEYREACTIVE_ENABLED

View file

@ -13,5 +13,5 @@ bool effect_runner_sin_cos_i(effect_params_t* params, sin_cos_i_f effect_func) {
RGB rgb = rgb_matrix_hsv_to_rgb(effect_func(rgb_matrix_config.hsv, cos_value, sin_value, i, time)); RGB rgb = rgb_matrix_hsv_to_rgb(effect_func(rgb_matrix_config.hsv, cos_value, sin_value, i, time));
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b); rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
} }
return led_max < DRIVER_LED_TOTAL; return rgb_matrix_check_finished_leds(led_max);
} }

View file

@ -9,7 +9,7 @@ bool SOLID_COLOR(effect_params_t* params) {
RGB_MATRIX_TEST_LED_FLAGS(); RGB_MATRIX_TEST_LED_FLAGS();
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b); rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
} }
return led_max < DRIVER_LED_TOTAL; return rgb_matrix_check_finished_leds(led_max);
} }
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS #endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

View file

@ -178,14 +178,7 @@ uint8_t rgb_matrix_map_row_column_to_led(uint8_t row, uint8_t column, uint8_t *l
void rgb_matrix_update_pwm_buffers(void) { rgb_matrix_driver.flush(); } void rgb_matrix_update_pwm_buffers(void) { rgb_matrix_driver.flush(); }
void rgb_matrix_set_color(int index, uint8_t red, uint8_t green, uint8_t blue) { void rgb_matrix_set_color(int index, uint8_t red, uint8_t green, uint8_t blue) { rgb_matrix_driver.set_color(index, red, green, blue); }
#if defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_SPLIT)
if (!is_keyboard_left() && index >= k_rgb_matrix_split[0])
rgb_matrix_driver.set_color(index - k_rgb_matrix_split[0], red, green, blue);
else if (is_keyboard_left() && index < k_rgb_matrix_split[0])
#endif
rgb_matrix_driver.set_color(index, red, green, blue);
}
void rgb_matrix_set_color_all(uint8_t red, uint8_t green, uint8_t blue) { void rgb_matrix_set_color_all(uint8_t red, uint8_t green, uint8_t blue) {
#if defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_SPLIT) #if defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_SPLIT)

View file

@ -48,14 +48,33 @@
#endif #endif
#if defined(RGB_MATRIX_LED_PROCESS_LIMIT) && RGB_MATRIX_LED_PROCESS_LIMIT > 0 && RGB_MATRIX_LED_PROCESS_LIMIT < DRIVER_LED_TOTAL #if defined(RGB_MATRIX_LED_PROCESS_LIMIT) && RGB_MATRIX_LED_PROCESS_LIMIT > 0 && RGB_MATRIX_LED_PROCESS_LIMIT < DRIVER_LED_TOTAL
# if defined(RGB_MATRIX_SPLIT)
# define RGB_MATRIX_USE_LIMITS(min, max) \
uint8_t min = RGB_MATRIX_LED_PROCESS_LIMIT * params->iter; \
uint8_t max = min + RGB_MATRIX_LED_PROCESS_LIMIT; \
if (max > DRIVER_LED_TOTAL) max = DRIVER_LED_TOTAL; \
uint8_t k_rgb_matrix_split[2] = RGB_MATRIX_SPLIT; \
if (is_keyboard_left() && (max > k_rgb_matrix_split[0])) max = k_rgb_matrix_split[0]; \
if (!(is_keyboard_left()) && (min < k_rgb_matrix_split[0])) min = k_rgb_matrix_split[0];
# else
# define RGB_MATRIX_USE_LIMITS(min, max) \ # define RGB_MATRIX_USE_LIMITS(min, max) \
uint8_t min = RGB_MATRIX_LED_PROCESS_LIMIT * params->iter; \ uint8_t min = RGB_MATRIX_LED_PROCESS_LIMIT * params->iter; \
uint8_t max = min + RGB_MATRIX_LED_PROCESS_LIMIT; \ uint8_t max = min + RGB_MATRIX_LED_PROCESS_LIMIT; \
if (max > DRIVER_LED_TOTAL) max = DRIVER_LED_TOTAL; if (max > DRIVER_LED_TOTAL) max = DRIVER_LED_TOTAL;
# endif
#else #else
# if defined(RGB_MATRIX_SPLIT)
# define RGB_MATRIX_USE_LIMITS(min, max) \
uint8_t min = 0; \
uint8_t max = DRIVER_LED_TOTAL; \
const uint8_t k_rgb_matrix_split[2] = RGB_MATRIX_SPLIT; \
if (is_keyboard_left() && (max > k_rgb_matrix_split[0])) max = k_rgb_matrix_split[0]; \
if (!(is_keyboard_left()) && (min < k_rgb_matrix_split[0])) min = k_rgb_matrix_split[0];
# else
# define RGB_MATRIX_USE_LIMITS(min, max) \ # define RGB_MATRIX_USE_LIMITS(min, max) \
uint8_t min = 0; \ uint8_t min = 0; \
uint8_t max = DRIVER_LED_TOTAL; uint8_t max = DRIVER_LED_TOTAL;
# endif
#endif #endif
#define RGB_MATRIX_INDICATOR_SET_COLOR(i, r, g, b) \ #define RGB_MATRIX_INDICATOR_SET_COLOR(i, r, g, b) \
@ -214,6 +233,18 @@ typedef struct {
void (*flush)(void); void (*flush)(void);
} rgb_matrix_driver_t; } rgb_matrix_driver_t;
static inline bool rgb_matrix_check_finished_leds(uint8_t led_idx) {
#if defined(RGB_MATRIX_SPLIT)
if (is_keyboard_left()) {
uint8_t k_rgb_matrix_split[2] = RGB_MATRIX_SPLIT;
return led_idx < k_rgb_matrix_split[0];
} else
return led_idx < DRIVER_LED_TOTAL;
#else
return led_idx < DRIVER_LED_TOTAL;
#endif
}
extern const rgb_matrix_driver_t rgb_matrix_driver; extern const rgb_matrix_driver_t rgb_matrix_driver;
extern rgb_config_t rgb_matrix_config; extern rgb_config_t rgb_matrix_config;

View file

@ -250,6 +250,14 @@ static void flush(void) {
// Set an led in the buffer to a color // Set an led in the buffer to a color
static inline void setled(int i, uint8_t r, uint8_t g, uint8_t b) { static inline void setled(int i, uint8_t r, uint8_t g, uint8_t b) {
# if defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_SPLIT)
const uint8_t k_rgb_matrix_split[2] = RGB_MATRIX_SPLIT;
if (!is_keyboard_left() && (i >= k_rgb_matrix_split[0])) {
i -= k_rgb_matrix_split[0];
} else if (is_keyboard_left() && (i >= k_rgb_matrix_split[0]))
return;
# endif
rgb_matrix_ws2812_array[i].r = r; rgb_matrix_ws2812_array[i].r = r;
rgb_matrix_ws2812_array[i].g = g; rgb_matrix_ws2812_array[i].g = g;
rgb_matrix_ws2812_array[i].b = b; rgb_matrix_ws2812_array[i].b = b;