1
0
Fork 0

Added support for locking One Shot modifiers.

This commit is contained in:
Fredric Silberberg 2017-08-06 14:14:27 -07:00 committed by Jack Humbert
parent 02f405708b
commit a3e1d9a8cc
5 changed files with 34 additions and 14 deletions

View file

@ -8,4 +8,4 @@ Here's how to use it:
2. Enable key lock by including `KEY_LOCK_ENABLE = yes` in your Makefile.
3. That's it!
Important: switching layers does not cancel the key lock. Additionally, key lock is only able to hold standard action keys. This does not include any of the QMK special functions, or shifted versions of keys such as KC_LPRN. If it's in the [basic_keycodes](basic_keycodes.md) list, it can be held. If it's not, then it can't be.
Important: switching layers does not cancel the key lock. Additionally, key lock is only able to hold standard action keys and One Shot modifier keys (for example, if you have your shift defined as `OSM(KC_LSFT)`; see [One Shot Keys](quantum_keycodes.md#one-shot-keys)). This does not include any of the QMK special functions (except One Shot modifiers), or shifted versions of keys such as KC_LPRN. If it's in the [basic_keycodes](basic_keycodes.md) list, it can be held. If it's not, then it can't be.

View file

@ -1,5 +1,6 @@
KEY_LOCK_ENABLE = yes
NKRO_ENABLE = yes
CONSOLE_ENABLE = yes
ifndef QUANTUM_DIR
include ../../../../Makefile

View file

@ -50,7 +50,16 @@
uint64_t key_state[4] = { 0x0, 0x0, 0x0, 0x0 };
bool watching = false;
bool process_key_lock(uint16_t keycode, keyrecord_t *record) {
// Translate any OSM keycodes back to their unmasked versions.
uint16_t inline translate_keycode(uint16_t keycode) {
if (keycode > QK_ONE_SHOT_MOD && keycode <= QK_ONE_SHOT_MOD_MAX) {
return keycode ^ QK_ONE_SHOT_MOD;
} else {
return keycode;
}
}
bool process_key_lock(uint16_t *keycode, keyrecord_t *record) {
// We start by categorizing the keypress event. In the event of a down
// event, there are several possibilities:
// 1. The key is not being locked, and we are not watching for new keys.
@ -76,44 +85,54 @@ bool process_key_lock(uint16_t keycode, keyrecord_t *record) {
// 2. The key is being locked. In this case, we will mask the up event
// by returning false, so the OS never sees that the key was released
// until the user pressed the key again.
// We translate any OSM keycodes back to their original keycodes, so that if the key being
// one-shot modded is a standard keycode, we can handle it. This is the only set of special
// keys that we handle
uint16_t translated_keycode = translate_keycode(*keycode);
if (record->event.pressed) {
// Non-standard keycode, reset and return
if (!(IS_STANDARD_KEYCODE(keycode) || keycode == KC_LOCK)) {
if (!(IS_STANDARD_KEYCODE(translated_keycode) || translated_keycode == KC_LOCK)) {
watching = false;
return true;
}
// If we're already watching, turn off the watch.
if (keycode == KC_LOCK) {
if (translated_keycode == KC_LOCK) {
watching = !watching;
return false;
}
if (IS_STANDARD_KEYCODE(keycode)) {
if (IS_STANDARD_KEYCODE(translated_keycode)) {
// We check watching first. This is so that in the following scenario, we continue to
// hold the key: KC_LOCK, KC_F, KC_LOCK, KC_F
// If we checked in reverse order, we'd end up holding the key pressed after the second
// KC_F press is registered, when the user likely meant to hold F
if (watching) {
watching = false;
SET_KEY_STATE(keycode);
SET_KEY_STATE(translated_keycode);
// We need to set the keycode passed in to be the translated keycode, in case we
// translated a OSM back to the original keycode.
*keycode = translated_keycode;
// Let the standard keymap send the keycode down event. The up event will be masked.
return true;
}
if (KEY_STATE(keycode)) {
UNSET_KEY_STATE(keycode);
if (KEY_STATE(translated_keycode)) {
UNSET_KEY_STATE(translated_keycode);
// The key is already held, stop this process. The up event will be sent when the user
// releases the key.
return false;
}
}
// Either the key isn't a standard key, or we need to send the down event. Continue standard
// processing
return true;
} else {
// Stop processing if it's a standard key and we're masking up.
return !(IS_STANDARD_KEYCODE(keycode) && KEY_STATE(keycode));
return !(IS_STANDARD_KEYCODE(translated_keycode) && KEY_STATE(translated_keycode));
}
}

View file

@ -19,6 +19,6 @@
#include "quantum.h"
bool process_key_lock(uint16_t keycode, keyrecord_t *record);
bool process_key_lock(uint16_t *keycode, keyrecord_t *record);
#endif // PROCESS_KEY_LOCK_H

View file

@ -195,7 +195,7 @@ bool process_record_quantum(keyrecord_t *record) {
if (!(
#if defined(KEY_LOCK_ENABLE)
// Must run first to be able to mask key_up events.
process_key_lock(keycode, record) &&
process_key_lock(&keycode, record) &&
#endif
process_record_kb(keycode, record) &&
#if defined(MIDI_ENABLE) && defined(MIDI_ADVANCED)