1
0
Fork 0

Cleanup rules.mk for USB64 and USB128 keyboards (#6769)

This commit is contained in:
fauxpark 2019-09-20 02:55:03 +10:00 committed by Drashna Jaelre
parent 911b8915cc
commit f34299efd7
27 changed files with 196 additions and 919 deletions

View file

@ -1,11 +1,15 @@
# MCU details # MCU name
MCU = at90usb1286 MCU = at90usb1286
F_CPU = 16000000
ARCH = AVR8
F_USB = $(F_CPU)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
OPT_DEFS += -DBOOTLOADER_SIZE=1024
# Bootloader selection
# Teensy halfkay
# Pro Micro caterina
# Atmel DFU atmel-dfu
# LUFA DFU lufa-dfu
# QMK DFU qmk-dfu
# ATmega32A bootloadHID
# ATmega328P USBasp
BOOTLOADER = halfkay
# Build Options # Build Options
BOOTMAGIC_ENABLE = no # Virtual DIP switch configuration(+1000) BOOTMAGIC_ENABLE = no # Virtual DIP switch configuration(+1000)

View file

@ -1,63 +1,16 @@
# MCU name # MCU name
MCU = at90usb1286 MCU = at90usb1286
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Bootloader selection # Bootloader selection
# Teensy halfkay # Teensy halfkay
# Pro Micro caterina # Pro Micro caterina
# Atmel DFU atmel-dfu # Atmel DFU atmel-dfu
# LUFA DFU lufa-dfu # LUFA DFU lufa-dfu
# QMK DFU qmk-dfu # QMK DFU qmk-dfu
# atmega32a bootloadHID # ATmega32A bootloadHID
# ATmega328P USBasp
BOOTLOADER = halfkay BOOTLOADER = halfkay
# If you don't know the bootloader type, then you can specify the
# Boot Section Size in *bytes* by uncommenting out the OPT_DEFS line
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
#OPT_DEFS += -DBOOTLOADER_SIZE=1024
# Build Options # Build Options
# change yes to no to disable # change yes to no to disable
# #

View file

@ -1,51 +1,15 @@
# MCU name # MCU name
MCU = at90usb1286 MCU = at90usb1286
# Processor frequency. # Bootloader selection
# This will define a symbol, F_CPU, in all source code files equal to the # Teensy halfkay
# processor frequency in Hz. You can then use this symbol in your source code to # Pro Micro caterina
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done # Atmel DFU atmel-dfu
# automatically to create a 32-bit value in your source code. # LUFA DFU lufa-dfu
# # QMK DFU qmk-dfu
# This will be an integer division of F_USB below, as it is sourced by # ATmega32A bootloadHID
# F_USB after it has run through any CPU prescalers. Note that this value # ATmega328P USBasp
# does not *change* the processor frequency - it should merely be updated to BOOTLOADER = halfkay
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options # Build Options
# change yes to no to disable # change yes to no to disable

View file

@ -1,62 +1,16 @@
# MCU name # MCU name
MCU = at90usb1286 MCU = at90usb1286
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Bootloader selection # Bootloader selection
# Teensy halfkay # Teensy halfkay
# Pro Micro caterina # Pro Micro caterina
# Atmel DFU atmel-dfu # Atmel DFU atmel-dfu
# LUFA DFU lufa-dfu # LUFA DFU lufa-dfu
# QMK DFU qmk-dfu # QMK DFU qmk-dfu
# atmega32a bootloadHID # ATmega32A bootloadHID
# ATmega328P USBasp
BOOTLOADER = halfkay BOOTLOADER = halfkay
# If you don't know the bootloader type, then you can specify the
# Boot Section Size in *bytes* by uncommenting out the OPT_DEFS line
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
# OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options # Build Options
# change yes to no to disable # change yes to no to disable
# #

View file

@ -1,17 +1,15 @@
# Target file name (without extension).
# project specific files
# MCU name # MCU name
MCU = at90usb1286 MCU = at90usb1286
# Boot Section Size in *bytes* # Bootloader selection
# Teensy halfKay 512 # Teensy halfkay
# Teensy++ halfKay 1024 # Pro Micro caterina
# Atmel DFU loader 4096 # Atmel DFU atmel-dfu
# LUFA bootloader 4096 # LUFA DFU lufa-dfu
# USBaspLoader 2048 # QMK DFU qmk-dfu
BOOTLOADER = halfKay # ATmega32A bootloadHID
# ATmega328P USBasp
BOOTLOADER = halfkay
# Build Options # Build Options
# change to no to disable the options. # change to no to disable the options.

View file

@ -1,49 +1,14 @@
# MCU name # MCU name
MCU = at90usb1286 MCU = at90usb1286
# Processor frequency. # Bootloader selection
# This will define a symbol, F_CPU, in all source code files equal to the # Teensy halfkay
# processor frequency in Hz. You can then use this symbol in your source code to # Pro Micro caterina
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done # Atmel DFU atmel-dfu
# automatically to create a 32-bit value in your source code. # LUFA DFU lufa-dfu
# # QMK DFU qmk-dfu
# This will be an integer division of F_USB below, as it is sourced by # ATmega32A bootloadHID
# F_USB after it has run through any CPU prescalers. Note that this value # ATmega328P USBasp
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
BOOTLOADER = atmel-dfu BOOTLOADER = atmel-dfu
# QMK Build Options # QMK Build Options

View file

@ -1,44 +1,14 @@
# Project-specific includes
SRC = matrix.c
# MCU name # MCU name
MCU = at90usb1286 MCU = at90usb1286
# Processor frequency. # Bootloader selection
# This will define a symbol, F_CPU, in all source code files equal to the # Teensy halfkay
# processor frequency in Hz. You can then use this symbol in your source code to # Pro Micro caterina
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done # Atmel DFU atmel-dfu
# automatically to create a 32-bit value in your source code. # LUFA DFU lufa-dfu
# # QMK DFU qmk-dfu
# This will be an integer division of F_USB below, as it is sourced by # ATmega32A bootloadHID
# F_USB after it has run through any CPU prescalers. Note that this value # ATmega328P USBasp
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
BOOTLOADER = halfkay BOOTLOADER = halfkay
# Build Options # Build Options
@ -57,3 +27,6 @@ CUSTOM_MATRIX = yes # We definitely have a nonstandard matrix
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE # Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE = no # Breathing sleep LED during USB suspend SLEEP_LED_ENABLE = no # Breathing sleep LED during USB suspend
# Project specific files
SRC = matrix.c

View file

@ -1,63 +1,16 @@
# MCU name # MCU name
MCU = at90usb1286 MCU = at90usb1286
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Bootloader selection # Bootloader selection
# Teensy halfkay # Teensy halfkay
# Pro Micro caterina # Pro Micro caterina
# Atmel DFU atmel-dfu # Atmel DFU atmel-dfu
# LUFA DFU lufa-dfu # LUFA DFU lufa-dfu
# QMK DFU qmk-dfu # QMK DFU qmk-dfu
# atmega32a bootloadHID # ATmega32A bootloadHID
# ATmega328P USBasp
BOOTLOADER = atmel-dfu BOOTLOADER = atmel-dfu
# If you don't know the bootloader type, then you can specify the
# Boot Section Size in *bytes* by uncommenting out the OPT_DEFS line
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
# OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options # Build Options
# change yes to no to disable # change yes to no to disable
# #

View file

@ -1,63 +1,16 @@
# MCU name # MCU name
MCU = at90usb1286 MCU = at90usb1286
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Bootloader selection # Bootloader selection
# Teensy halfkay # Teensy halfkay
# Pro Micro caterina # Pro Micro caterina
# Atmel DFU atmel-dfu # Atmel DFU atmel-dfu
# LUFA DFU lufa-dfu # LUFA DFU lufa-dfu
# QMK DFU qmk-dfu # QMK DFU qmk-dfu
# atmega32a bootloadHID # ATmega32A bootloadHID
# ATmega328P USBasp
BOOTLOADER = halfkay BOOTLOADER = halfkay
# If you don't know the bootloader type, then you can specify the
# Boot Section Size in *bytes* by uncommenting out the OPT_DEFS line
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
# OPT_DEFS += -DBOOTLOADER_SIZE=1024
# Build Options # Build Options
# change yes to no to disable # change yes to no to disable
# #

View file

@ -1,51 +1,15 @@
# MCU name # MCU name
MCU = at90usb1286 MCU = at90usb1286
BOOTLOADER = halfKay
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
# Bootloader selection
# Teensy halfkay
# Pro Micro caterina
# Atmel DFU atmel-dfu
# LUFA DFU lufa-dfu
# QMK DFU qmk-dfu
# ATmega32A bootloadHID
# ATmega328P USBasp
BOOTLOADER = halfkay
# Build Options # Build Options
# change yes to no to disable # change yes to no to disable

View file

@ -1,52 +1,15 @@
# MCU name # MCU name
MCU = at90usb1286 MCU = at90usb1286
# Processor frequency. # Bootloader selection
# This will define a symbol, F_CPU, in all source code files equal to the # Teensy halfkay
# processor frequency in Hz. You can then use this symbol in your source code to # Pro Micro caterina
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done # Atmel DFU atmel-dfu
# automatically to create a 32-bit value in your source code. # LUFA DFU lufa-dfu
# # QMK DFU qmk-dfu
# This will be an integer division of F_USB below, as it is sourced by # ATmega32A bootloadHID
# F_USB after it has run through any CPU prescalers. Note that this value # ATmega328P USBasp
# does not *change* the processor frequency - it should merely be updated to BOOTLOADER = halfkay
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=1024
# Build Options # Build Options
# change yes to no to disable # change yes to no to disable

View file

@ -1,37 +1,27 @@
## Project specific files
SRC= babblePaste.c
ifdef ASTAR ifdef ASTAR
CFLAGS=-D ASTAR
MCU = atmega32u4 MCU = atmega32u4
SCULPT_UPLOAD_COMMAND = while [ ! -r $(USB) ]; do sleep 1; done ; \ CFLAGS = -D ASTAR
avrdude -p $(MCU) -c avr109 -U flash:w:$(TARGET).hex -P $(USB) USB = /dev/cu.usbmodem14141
SCULPT_UPLOAD_COMMAND = while [ ! -r $(USB) ]; do sleep 1; done ; avrdude -p $(MCU) -c avr109 -U flash:w:$(TARGET).hex -P $(USB)
else else
MCU = at90usb1286 MCU = at90usb1286
SCULPT_UPLOAD_COMMAND = teensy_loader_cli -w -mmcu=$(MCU) $(TARGET).hex SCULPT_UPLOAD_COMMAND = teensy_loader_cli -w -mmcu=$(MCU) $(TARGET).hex
endif endif
F_CPU = 16000000 # Bootloader selection
ARCH = AVR8 # Teensy halfkay
F_USB = $(F_CPU) # Pro Micro caterina
# Atmel DFU atmel-dfu
# Bootloader # LUFA DFU lufa-dfu
# This definition is optional, and if your keyboard supports multiple bootloaders of # QMK DFU qmk-dfu
# different sizes, comment this out, and the correct address will be loaded # ATmega32A bootloadHID
# automatically (+60). See bootloader.mk for all options. # ATmega328P USBasp
ifdef ASTAR ifdef ASTAR
BOOTLOADER = caterina BOOTLOADER = caterina
else else
BOOTLOADER = atmel-dfu BOOTLOADER = atmel-dfu
endif endif
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
#
BOOTMAGIC_ENABLE = no # Virtual DIP switch configuration(+1000) BOOTMAGIC_ENABLE = no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = no # Mouse keys(+4700) MOUSEKEY_ENABLE = no # Mouse keys(+4700)
EXTRAKEY_ENABLE = yes # Audio control and System control(+450) EXTRAKEY_ENABLE = yes # Audio control and System control(+450)
@ -47,10 +37,5 @@ UNICODE_ENABLE = no # Unicode
BLUETOOTH_ENABLE = no # Enable Bluetooth with the Adafruit EZ-Key HID BLUETOOTH_ENABLE = no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE = no # Audio output on port C6 AUDIO_ENABLE = no # Audio output on port C6
# Project specific files
USB = /dev/cu.usbmodem14141 SRC = babblePaste.c
# upload: build
# $(SCULPT_UPLOAD_COMMAND)

View file

@ -1,58 +1,12 @@
# MCU name # MCU name
MCU = at90usb1286 MCU = at90usb1286
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Bootloader selection # Bootloader selection
# Teensy halfkay # Teensy halfkay
# Pro Micro caterina # Pro Micro caterina
# Atmel DFU atmel-dfu # Atmel DFU atmel-dfu
# LUFA DFU lufa-dfu # LUFA DFU lufa-dfu
# QMK DFU qmk-dfu # QMK DFU qmk-dfu
# atmega32a bootloadHID # ATmega32A bootloadHID
# ATmega328P USBasp
BOOTLOADER = halfkay BOOTLOADER = halfkay
# If you don't know the bootloader type, then you can specify the
# Boot Section Size in *bytes* by uncommenting out the OPT_DEFS line
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
# OPT_DEFS += -DBOOTLOADER_SIZE=4096

View file

@ -1,56 +1,15 @@
## Project specific files
SRC= matrix.c
# MCU name # MCU name
MCU = at90usb1286 MCU = at90usb1286
# Processor frequency. # Bootloader selection
# This will define a symbol, F_CPU, in all source code files equal to the # Teensy halfkay
# processor frequency in Hz. You can then use this symbol in your source code to # Pro Micro caterina
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done # Atmel DFU atmel-dfu
# automatically to create a 32-bit value in your source code. # LUFA DFU lufa-dfu
# # QMK DFU qmk-dfu
# This will be an integer division of F_USB below, as it is sourced by # ATmega32A bootloadHID
# F_USB after it has run through any CPU prescalers. Note that this value # ATmega328P USBasp
# does not *change* the processor frequency - it should merely be updated to BOOTLOADER = halfkay
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 2048
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=2048
# Build Options # Build Options
# change yes to no to disable # change yes to no to disable
@ -72,3 +31,6 @@ AUDIO_ENABLE = no # Audio output should be port E6, current quantum library hard
CUSTOM_MATRIX=yes # need to do our own thing with the matrix CUSTOM_MATRIX=yes # need to do our own thing with the matrix
DEFAULT_FOLDER = kinesis/alvicstep DEFAULT_FOLDER = kinesis/alvicstep
# Project specific files
SRC = matrix.c

View file

@ -7,14 +7,12 @@ LFK_REV = J
ifeq ($(LFK_REV), B) ifeq ($(LFK_REV), B)
MCU = atmega32u4 MCU = atmega32u4
OPT_DEFS += -DBOOTLOADER_SIZE=4096
else ifeq ($(LFK_REV), J) else ifeq ($(LFK_REV), J)
MCU = at90usb646 MCU = at90usb646
OPT_DEFS += -DBOOTLOADER_SIZE=4096
else else
MCU = at90usb1286 MCU = at90usb1286
OPT_DEFS += -DBOOTLOADER_SIZE=8192
endif endif
BOOTLOADER = atmel-dfu
OPT_DEFS += -DLFK_REV_$(LFK_REV) OPT_DEFS += -DLFK_REV_$(LFK_REV)
OPT_DEFS += -DLFK_REV_STRING=\"Rev$(LFK_REV)\" OPT_DEFS += -DLFK_REV_STRING=\"Rev$(LFK_REV)\"

View file

@ -8,11 +8,10 @@ LFK_REV = C
ifeq ($(LFK_REV), A) ifeq ($(LFK_REV), A)
MCU = at90usb1286 MCU = at90usb1286
OPT_DEFS += -DBOOTLOADER_SIZE=8192
else else
MCU = at90usb646 MCU = at90usb646
OPT_DEFS += -DBOOTLOADER_SIZE=4096
endif endif
BOOTLOADER = atmel-dfu
OPT_DEFS += -DLFK_TKL_REV_$(LFK_REV) OPT_DEFS += -DLFK_TKL_REV_$(LFK_REV)
# Extra source files for IS3731 lighting # Extra source files for IS3731 lighting

View file

@ -9,11 +9,10 @@ LFK_REV = C
ifeq ($(LFK_REV), A) ifeq ($(LFK_REV), A)
MCU = at90usb1286 MCU = at90usb1286
OPT_DEFS += -DBOOTLOADER_SIZE=8192
else else
MCU = at90usb646 MCU = at90usb646
OPT_DEFS += -DBOOTLOADER_SIZE=4096
endif endif
BOOTLOADER = atmel-dfu
OPT_DEFS += -DLFK_TKL_REV_$(LFK_REV) OPT_DEFS += -DLFK_TKL_REV_$(LFK_REV)
# Extra source files for IS3731 lighting # Extra source files for IS3731 lighting

View file

@ -1,5 +1,15 @@
# MCU name
MCU = at90usb646 MCU = at90usb646
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Bootloader selection
# Teensy halfkay
# Pro Micro caterina
# Atmel DFU atmel-dfu
# LUFA DFU lufa-dfu
# QMK DFU qmk-dfu
# ATmega32A bootloadHID
# ATmega328P USBasp
BOOTLOADER = atmel-dfu
# Extra source files for IS3731 lighting # Extra source files for IS3731 lighting
SRC = TWIlib.c issi.c lighting.c SRC = TWIlib.c issi.c lighting.c

View file

@ -1,54 +1,16 @@
# MCU name # MCU name
MCU = at90usb1286 MCU = at90usb1286
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Bootloader selection # Bootloader selection
# Teensy halfkay # Teensy halfkay
# Pro Micro caterina # Pro Micro caterina
# Atmel DFU atmel-dfu # Atmel DFU atmel-dfu
# LUFA DFU lufa-dfu # LUFA DFU lufa-dfu
# QMK DFU qmk-dfu # QMK DFU qmk-dfu
# atmega32a bootloadHID # ATmega32A bootloadHID
# ATmega328P USBasp
BOOTLOADER = atmel-dfu BOOTLOADER = atmel-dfu
# Build Options # Build Options
# change yes to no to disable # change yes to no to disable
# #

View file

@ -1,45 +1,15 @@
# MCU name # MCU name
MCU = at90usb1286 MCU = at90usb1286
# Processor frequency. # Bootloader selection
# This will define a symbol, F_CPU, in all source code files equal to the # Teensy halfkay
# processor frequency in Hz. You can then use this symbol in your source code to # Pro Micro caterina
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done # Atmel DFU atmel-dfu
# automatically to create a 32-bit value in your source code. # LUFA DFU lufa-dfu
# # QMK DFU qmk-dfu
# This will be an integer division of F_USB below, as it is sourced by # ATmega32A bootloadHID
# F_USB after it has run through any CPU prescalers. Note that this value # ATmega328P USBasp
# does not *change* the processor frequency - it should merely be updated to BOOTLOADER = halfkay
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options # Build Options
# comment out to disable the options. # comment out to disable the options.

View file

@ -1,55 +1,16 @@
# keyboard specific files
SRC += dynamic_macro.c
# MCU name # MCU name
MCU = at90usb1286 MCU = at90usb1286
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Bootloader selection # Bootloader selection
# Teensy halfkay # Teensy halfkay
# Pro Micro caterina # Pro Micro caterina
# Atmel DFU atmel-dfu # Atmel DFU atmel-dfu
# LUFA DFU lufa-dfu # LUFA DFU lufa-dfu
# QMK DFU qmk-dfu # QMK DFU qmk-dfu
# atmega32a bootloadHID # ATmega32A bootloadHID
# ATmega328P USBasp
BOOTLOADER = halfkay BOOTLOADER = halfkay
# Build Options # Build Options
# comment out to disable the options. # comment out to disable the options.
# #
@ -63,3 +24,6 @@ NKRO_ENABLE = yes # USB Nkey Rollover - if this doesn't work, see here: https:/
BACKLIGHT_ENABLE = no # Enable keyboard backlight functionality BACKLIGHT_ENABLE = no # Enable keyboard backlight functionality
AUDIO_ENABLE = no AUDIO_ENABLE = no
RGBLIGHT_ENABLE = no RGBLIGHT_ENABLE = no
# Project specific files
SRC += dynamic_macro.c

View file

@ -1,15 +1,16 @@
# MCU name # MCU name
MCU = at90usb1286 MCU = at90usb1286
# Bootloader # Bootloader selection
# This definition is optional, and if your keyboard supports multiple bootloaders of # Teensy halfkay
# different sizes, comment this out, and the correct address will be loaded # Pro Micro caterina
# automatically (+60). See bootloader.mk for all options. # Atmel DFU atmel-dfu
# LUFA DFU lufa-dfu
# QMK DFU qmk-dfu
# ATmega32A bootloadHID
# ATmega328P USBasp
BOOTLOADER = atmel-dfu BOOTLOADER = atmel-dfu
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Build Options # Build Options
# change to "no" to disable the options, or define them in the Makefile in # change to "no" to disable the options, or define them in the Makefile in
# the appropriate keymap folder that will get included automatically # the appropriate keymap folder that will get included automatically

View file

@ -1,51 +1,15 @@
# MCU name # MCU name
MCU = at90usb1286 MCU = at90usb1286
# Processor frequency. # Bootloader selection
# This will define a symbol, F_CPU, in all source code files equal to the # Teensy halfkay
# processor frequency in Hz. You can then use this symbol in your source code to # Pro Micro caterina
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done # Atmel DFU atmel-dfu
# automatically to create a 32-bit value in your source code. # LUFA DFU lufa-dfu
# # QMK DFU qmk-dfu
# This will be an integer division of F_USB below, as it is sourced by # ATmega32A bootloadHID
# F_USB after it has run through any CPU prescalers. Note that this value # ATmega328P USBasp
# does not *change* the processor frequency - it should merely be updated to BOOTLOADER = atmel-dfu
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=8192
# Build Options # Build Options
# change to "no" to disable the options, or define them in the Makefile in # change to "no" to disable the options, or define them in the Makefile in

View file

@ -1,52 +1,15 @@
# MCU name # MCU name
MCU = at90usb1286 MCU = at90usb1286
# Processor frequency. # Bootloader selection
# This will define a symbol, F_CPU, in all source code files equal to the # Teensy halfkay
# processor frequency in Hz. You can then use this symbol in your source code to # Pro Micro caterina
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done # Atmel DFU atmel-dfu
# automatically to create a 32-bit value in your source code. # LUFA DFU lufa-dfu
# # QMK DFU qmk-dfu
# This will be an integer division of F_USB below, as it is sourced by # ATmega32A bootloadHID
# F_USB after it has run through any CPU prescalers. Note that this value # ATmega328P USBasp
# does not *change* the processor frequency - it should merely be updated to BOOTLOADER = atmel-dfu
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=8192
# Build Options # Build Options
# change yes to no to disable # change yes to no to disable

View file

@ -1,45 +1,15 @@
# MCU name # MCU name
MCU = at90usb1286 MCU = at90usb1286
# Processor frequency. # Bootloader selection
# This will define a symbol, F_CPU, in all source code files equal to the # Teensy halfkay
# processor frequency in Hz. You can then use this symbol in your source code to # Pro Micro caterina
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done # Atmel DFU atmel-dfu
# automatically to create a 32-bit value in your source code. # LUFA DFU lufa-dfu
# # QMK DFU qmk-dfu
# This will be an integer division of F_USB below, as it is sourced by # ATmega32A bootloadHID
# F_USB after it has run through any CPU prescalers. Note that this value # ATmega328P USBasp
# does not *change* the processor frequency - it should merely be updated to BOOTLOADER = atmel-dfu
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
OPT_DEFS += -DBOOTLOADER_SIZE=8192
# Build Options # Build Options
# comment out to disable the options. # comment out to disable the options.

View file

@ -1,51 +1,15 @@
# MCU name # MCU name
MCU = at90usb1286 MCU = at90usb1286
# Processor frequency. # Bootloader selection
# This will define a symbol, F_CPU, in all source code files equal to the # Teensy halfkay
# processor frequency in Hz. You can then use this symbol in your source code to # Pro Micro caterina
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done # Atmel DFU atmel-dfu
# automatically to create a 32-bit value in your source code. # LUFA DFU lufa-dfu
# # QMK DFU qmk-dfu
# This will be an integer division of F_USB below, as it is sourced by # ATmega32A bootloadHID
# F_USB after it has run through any CPU prescalers. Note that this value # ATmega328P USBasp
# does not *change* the processor frequency - it should merely be updated to BOOTLOADER = halfkay
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=1024
# Build Options # Build Options
# change yes to no to disable # change yes to no to disable

View file

@ -1,48 +1,16 @@
# MCU name # MCU name
MCU = at90usb1286 MCU = at90usb1286
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Bootloader selection # Bootloader selection
# Teensy halfkay
# Pro Micro caterina
# Atmel DFU atmel-dfu
# LUFA DFU lufa-dfu
# QMK DFU qmk-dfu
# ATmega32A bootloadHID
# ATmega328P USBasp
BOOTLOADER = halfkay BOOTLOADER = halfkay
# Boot Section Size in *bytes*
# OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options # Build Options
# comment out to disable the options. # comment out to disable the options.
# #