WIP massive refactor

This commit is contained in:
Isaac Freund 2020-03-22 22:42:55 +01:00
parent 76ed2a72a8
commit 0584fde126
No known key found for this signature in database
GPG key ID: 86DED400DDFD7A11
9 changed files with 930 additions and 786 deletions

338
src/cursor.zig Normal file
View file

@ -0,0 +1,338 @@
const std = @import("std");
const c = @import("c.zig").c;
const CursorMode = enum {
Passthrough,
Move,
Resize,
};
pub const Cursor = struct {
seat: *Seat,
wlr_cursor: *c.wlr_cursor,
wlr_xcursor_manager: *c.wlr_xcursor_manager,
listen_motion: c.wl_listener,
listen_motion_absolute: c.wl_listener,
listen_button: c.wl_listener,
listen_axis: c.wl_listener,
listen_frame: c.wl_listener,
listen_request_cursor: c.wl_listener,
cursor_mode: CursorMode,
grabbed_view: ?*View,
grab_x: f64,
grab_y: f64,
grab_width: c_int,
grab_height: c_int,
resize_edges: u32,
pub fn init(seat: *Seat) !@This() {
var cursor = @This(){
.server = seat.server,
.seat = seat,
// Creates a wlroots utility for tracking the cursor image shown on screen.
.wlr_cursor = c.wlr_cursor_create() orelse
return error.CantCreateWlrCursor,
// Creates an xcursor manager, another wlroots utility which loads up
// Xcursor themes to source cursor images from and makes sure that cursor
// images are available at all scale factors on the screen (necessary for
// HiDPI support). We add a cursor theme at scale factor 1 to begin with.
.wlr_xcursor_manager = c.wlr_xcursor_manager_create(null, 24) orelse
return error.CantCreateWlrXCursorManager,
.listen_motion = c.wl_listener{
.link = undefined,
.notify = @This().handle_motion,
},
.listen_motion_absolute = c.wl_listener{
.link = undefined,
.notify = @This().handle_motion_absolute,
},
.listen_button = c.wl_listener{
.link = undefined,
.notify = @This().handle_button,
},
.listen_axis = c.wl_listener{
.link = undefined,
.notify = @This().handle_axis,
},
.listen_frame = c.wl_listener{
.link = undefined,
.notify = @This().handle_frame,
},
.listen_request_set_cursor = c.wl_listener{
.link = undefined,
.notify = @This().handle_request_set_cursor,
},
.mode = CursorMode.Passthrough,
.grabbed_view = null,
.grab_x = 0.0,
.grab_y = 0.0,
.grab_width = 0,
.grab_height = 0,
.resize_edges = 0,
};
c.wlr_cursor_attach_output_layout(cursor.wlr_cursor, seat.*.server.*.output_layout);
_ = c.wlr_xcursor_manager_load(server.cursor_mgr, 1);
// wlr_cursor *only* displays an image on screen. It does not move around
// when the pointer moves. However, we can attach input devices to it, and
// it will generate aggregate events for all of them. In these events, we
// can choose how we want to process them, forwarding them to clients and
// moving the cursor around. See following post for more detail:
// https://drewdevault.com/2018/07/17/Input-handling-in-wlroots.html
c.wl_signal_add(&cursor.wlr_cursor.*.events.motion, &cursor.listen_motion);
c.wl_signal_add(&cursor.wlr_cursor.*.events.motion_absolute, &cursor.listen_motion_absolute);
c.wl_signal_add(&cursor.wlr_cursor.*.events.button, &cursor.listen_button);
c.wl_signal_add(&cursor.wlr_cursor.*.events.axis, &cursor.listen_axis);
c.wl_signal_add(&cursor.wlr_cursor.*.events.frame, &cursor.listen_frame);
// This listens for clients requesting a specific cursor image
c.wl_signal_add(&server.seat.*.events.request_set_cursor, &cursor.listen_request_set_cursor);
return cursor;
}
fn process_cursor_move(server: *Server, time: u32) void {
// Move the grabbed view to the new position.
server.*.grabbed_view.?.*.x = @floatToInt(c_int, server.*.cursor.*.x - server.*.grab_x);
server.*.grabbed_view.?.*.y = @floatToInt(c_int, server.*.cursor.*.y - server.*.grab_y);
}
fn process_cursor_resize(server: *Server, time: u32) void {
// Resizing the grabbed view can be a little bit complicated, because we
// could be resizing from any corner or edge. This not only resizes the view
// on one or two axes, but can also move the view if you resize from the top
// or left edges (or top-left corner).
//
// Note that I took some shortcuts here. In a more fleshed-out compositor,
// you'd wait for the client to prepare a buffer at the new size, then
// commit any movement that was prepared.
var view = server.*.grabbed_view;
var dx: f64 = (server.*.cursor.*.x - server.*.grab_x);
var dy: f64 = (server.*.cursor.*.y - server.*.grab_y);
var x: f64 = @intToFloat(f64, view.?.*.x);
var y: f64 = @intToFloat(f64, view.?.*.y);
var width = @intToFloat(f64, server.*.grab_width);
var height = @intToFloat(f64, server.*.grab_height);
if (server.*.resize_edges & @intCast(u32, c.WLR_EDGE_TOP) != 0) {
y = server.*.grab_y + dy;
height -= dy;
if (height < 1) {
y += height;
}
} else if (server.*.resize_edges & @intCast(u32, c.WLR_EDGE_BOTTOM) != 0) {
height += dy;
}
if (server.*.resize_edges & @intCast(u32, c.WLR_EDGE_LEFT) != 0) {
x = server.*.grab_x + dx;
width -= dx;
if (width < 1) {
x += width;
}
} else if (server.*.resize_edges & @intCast(u32, c.WLR_EDGE_RIGHT) != 0) {
width += dx;
}
view.?.*.x = @floatToInt(c_int, x);
view.?.*.y = @floatToInt(c_int, y);
_ = c.wlr_xdg_toplevel_set_size(
view.?.*.xdg_surface,
@floatToInt(u32, width),
@floatToInt(u32, height),
);
}
fn process_cursor_motion(server: *Server, time: u32) void {
// If the mode is non-passthrough, delegate to those functions.
if (server.*.cursor_mode == CursorMode.Move) {
process_cursor_move(server, time);
return;
} else if (server.*.cursor_mode == CursorMode.Resize) {
process_cursor_resize(server, time);
return;
}
// Otherwise, find the view under the pointer and send the event along.
var sx: f64 = undefined;
var sy: f64 = undefined;
var seat = server.*.seat;
var opt_surface: ?*c.wlr_surface = null;
var view = desktop_view_at(
server,
server.*.cursor.*.x,
server.*.cursor.*.y,
&opt_surface,
&sx,
&sy,
);
if (view == null) {
// If there's no view under the cursor, set the cursor image to a
// default. This is what makes the cursor image appear when you move it
// around the screen, not over any views.
c.wlr_xcursor_manager_set_cursor_image(
server.*.cursor_mgr,
"left_ptr",
server.*.cursor,
);
}
if (opt_surface) |surface| {
const focus_changed = seat.*.pointer_state.focused_surface != surface;
// "Enter" the surface if necessary. This lets the client know that the
// cursor has entered one of its surfaces.
//
// Note that this gives the surface "pointer focus", which is distinct
// from keyboard focus. You get pointer focus by moving the pointer over
// a window.
c.wlr_seat_pointer_notify_enter(seat, surface, sx, sy);
if (!focus_changed) {
// The enter event contains coordinates, so we only need to notify
// on motion if the focus did not change.
c.wlr_seat_pointer_notify_motion(seat, time, sx, sy);
}
} else {
// Clear pointer focus so future button events and such are not sent to
// the last client to have the cursor over it.
c.wlr_seat_pointer_clear_focus(seat);
}
}
fn handle_motion(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// This event is forwarded by the cursor when a pointer emits a _relative_
// pointer motion event (i.e. a delta)
var server = @fieldParentPtr(Server, "cursor_motion", listener);
var event = @ptrCast(
*c.wlr_event_pointer_motion,
@alignCast(@alignOf(*c.wlr_event_pointer_motion), data),
);
// The cursor doesn't move unless we tell it to. The cursor automatically
// handles constraining the motion to the output layout, as well as any
// special configuration applied for the specific input device which
// generated the event. You can pass NULL for the device if you want to move
// the cursor around without any input.
c.wlr_cursor_move(server.*.cursor, event.*.device, event.*.delta_x, event.*.delta_y);
process_cursor_motion(server, event.*.time_msec);
}
fn handle_motion_absolute(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// This event is forwarded by the cursor when a pointer emits an _absolute_
// motion event, from 0..1 on each axis. This happens, for example, when
// wlroots is running under a Wayland window rather than KMS+DRM, and you
// move the mouse over the window. You could enter the window from any edge,
// so we have to warp the mouse there. There is also some hardware which
// emits these events.
var server = @fieldParentPtr(Server, "cursor_motion_absolute", listener);
var event = @ptrCast(
*c.wlr_event_pointer_motion_absolute,
@alignCast(@alignOf(*c.wlr_event_pointer_motion_absolute), data),
);
c.wlr_cursor_warp_absolute(server.*.cursor, event.*.device, event.*.x, event.*.y);
process_cursor_motion(server, event.*.time_msec);
}
fn handle_button(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// This event is forwarded by the cursor when a pointer emits a button
// event.
var server = @fieldParentPtr(Server, "cursor_button", listener);
var event = @ptrCast(
*c.wlr_event_pointer_button,
@alignCast(@alignOf(*c.wlr_event_pointer_button), data),
);
// Notify the client with pointer focus that a button press has occurred
_ = c.wlr_seat_pointer_notify_button(
server.*.seat,
event.*.time_msec,
event.*.button,
event.*.state,
);
var sx: f64 = undefined;
var sy: f64 = undefined;
var surface: ?*c.wlr_surface = null;
var view = desktop_view_at(
server,
server.*.cursor.*.x,
server.*.cursor.*.y,
&surface,
&sx,
&sy,
);
if (event.*.state == c.enum_wlr_button_state.WLR_BUTTON_RELEASED) {
// If you released any buttons, we exit interactive move/resize mode.
server.*.cursor_mode = CursorMode.Passthrough;
} else {
// Focus that client if the button was _pressed_
if (view) |v| {
focus_view(v, surface.?);
}
}
}
fn handle_axis(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// This event is forwarded by the cursor when a pointer emits an axis event,
// for example when you move the scroll wheel.
var server = @fieldParentPtr(Server, "cursor_axis", listener);
var event = @ptrCast(
*c.wlr_event_pointer_axis,
@alignCast(@alignOf(*c.wlr_event_pointer_axis), data),
);
// Notify the client with pointer focus of the axis event.
c.wlr_seat_pointer_notify_axis(
server.*.seat,
event.*.time_msec,
event.*.orientation,
event.*.delta,
event.*.delta_discrete,
event.*.source,
);
}
fn handle_frame(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// This event is forwarded by the cursor when a pointer emits an frame
// event. Frame events are sent after regular pointer events to group
// multiple events together. For instance, two axis events may happen at the
// same time, in which case a frame event won't be sent in between.
var server = @fieldParentPtr(Server, "cursor_frame", listener);
// Notify the client with pointer focus of the frame event.
c.wlr_seat_pointer_notify_frame(server.*.seat);
}
fn handle_request_set_cursor(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// This event is rasied by the seat when a client provides a cursor image
var server = @fieldParentPtr(Server, "request_cursor", listener);
var event = @ptrCast(
*c.wlr_seat_pointer_request_set_cursor_event,
@alignCast(@alignOf(*c.wlr_seat_pointer_request_set_cursor_event), data),
);
var focused_client = server.*.seat.*.pointer_state.focused_client;
// This can be sent by any client, so we check to make sure this one is
// actually has pointer focus first.
if (focused_client == event.*.seat_client) {
// Once we've vetted the client, we can tell the cursor to use the
// provided surface as the cursor image. It will set the hardware cursor
// on the output that it's currently on and continue to do so as the
// cursor moves between outputs.
c.wlr_cursor_set_surface(
server.*.cursor,
event.*.surface,
event.*.hotspot_x,
event.*.hotspot_y,
);
}
}
};

117
src/keyboard.zig Normal file
View file

@ -0,0 +1,117 @@
const std = @import("std");
const c = @import("c.zig").c;
const Keyboard = struct {
seat: *Seat,
device: *c.wlr_input_device,
listen_modifiers: c.wl_listener,
listen_key: c.wl_listener,
pub fn init(seat: *Seat, device: *c.wlr_input_device) @This() {
var keyboard = @This(){
.seat = seat,
.device = device,
.listen_modifiers = c.wl_listener{
.link = undefined,
.notify = handle_modifiers,
},
.listen_key = c.wl_listener{
.link = undefined,
.notify = handle_key,
},
};
// We need to prepare an XKB keymap and assign it to the keyboard. This
// assumes the defaults (e.g. layout = "us").
const rules = c.xkb_rule_names{
.rules = null,
.model = null,
.layout = null,
.variant = null,
.options = null,
};
const context = c.xkb_context_new(c.enum_xkb_context_flags.XKB_CONTEXT_NO_FLAGS);
defer c.xkb_context_unref(context);
const keymap = man_c.xkb_map_new_from_names(
context,
&rules,
c.enum_xkb_keymap_compile_flags.XKB_KEYMAP_COMPILE_NO_FLAGS,
);
defer c.xkb_keymap_unref(keymap);
var keyboard_device = device.*.unnamed_37.keyboard;
c.wlr_keyboard_set_keymap(keyboard_device, keymap);
c.wlr_keyboard_set_repeat_info(keyboard_device, 25, 600);
// Setup listeners for keyboard events
c.wl_signal_add(&keyboard_device.*.events.modifiers, &keyboard.*.listen_modifiers);
c.wl_signal_add(&keyboard_device.*.events.key, &keyboard.*.listen_key);
return keyboard;
}
fn handle_modifiers(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// This event is raised when a modifier key, such as shift or alt, is
// pressed. We simply communicate this to the client. */
var keyboard = @fieldParentPtr(Keyboard, "listen_modifiers", listener);
// A seat can only have one keyboard, but this is a limitation of the
// Wayland protocol - not wlroots. We assign all connected keyboards to the
// same seat. You can swap out the underlying wlr_keyboard like this and
// wlr_seat handles this transparently.
c.wlr_seat_set_keyboard(keyboard.*.server.*.seat, keyboard.*.device);
// Send modifiers to the client.
c.wlr_seat_keyboard_notify_modifiers(keyboard.*.server.*.seat, &keyboard.*.device.*.unnamed_37.keyboard.*.modifiers);
}
fn handle_key(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// This event is raised when a key is pressed or released.
const keyboard = @fieldParentPtr(Keyboard, "listen_key", listener);
const event = @ptrCast(
*c.wlr_event_keyboard_key,
@alignCast(@alignOf(*c.wlr_event_keyboard_key), data),
);
const server = keyboard.*.server;
const seat = server.*.seat;
const keyboard_device = keyboard.*.device.*.unnamed_37.keyboard;
// Translate libinput keycode -> xkbcommon
const keycode = event.*.keycode + 8;
// Get a list of keysyms based on the keymap for this keyboard
var syms: *c.xkb_keysym_t = undefined;
const nsyms = c.xkb_state_key_get_syms(keyboard_device.*.xkb_state, keycode, &syms);
var handled = false;
const modifiers = c.wlr_keyboard_get_modifiers(keyboard_device);
if (modifiers & @intCast(u32, c.WLR_MODIFIER_LOGO) != 0 and
event.*.state == c.enum_wlr_key_state.WLR_KEY_PRESSED)
{
// If mod is held down and this button was _pressed_, we attempt to
// process it as a compositor keybinding.
var i: usize = 0;
while (i < nsyms) {
handled = keyboard.seat.server.handle_keybinding(syms[i]);
if (handled) {
break;
}
i += 1;
}
}
if (!handled) {
// Otherwise, we pass it along to the client.
c.wlr_seat_set_keyboard(seat, keyboard.*.device);
c.wlr_seat_keyboard_notify_key(
seat,
event.*.time_msec,
event.*.keycode,
@intCast(u32, @enumToInt(event.*.state)),
);
}
}
};

View file

@ -2,718 +2,6 @@ const std = @import("std");
const c = @import("c.zig").c; const c = @import("c.zig").c;
const man_c = @import("c.zig").manual; const man_c = @import("c.zig").manual;
const Server = struct {
wl_display: *c.wl_display,
backend: *c.wlr_backend,
renderer: *c.wlr_renderer,
xdg_shell: *c.wlr_xdg_shell,
new_xdg_surface: c.wl_listener,
views: std.ArrayList(View),
cursor: *c.wlr_cursor,
cursor_mgr: *c.wlr_xcursor_manager,
cursor_motion: c.wl_listener,
cursor_motion_absolute: c.wl_listener,
cursor_button: c.wl_listener,
cursor_axis: c.wl_listener,
cursor_frame: c.wl_listener,
seat: *c.wlr_seat,
new_input: c.wl_listener,
request_cursor: c.wl_listener,
keyboards: c.wl_list,
cursor_mode: CursorMode,
grabbed_view: ?*View,
grab_x: f64,
grab_y: f64,
grab_width: c_int,
grab_height: c_int,
resize_edges: u32,
output_layout: *c.wlr_output_layout,
outputs: std.ArrayList(Output),
new_output: c.wl_listener,
};
const Output = struct {
server: *Server,
wlr_output: *c.wlr_output,
frame: c.wl_listener,
};
const View = struct {
server: *Server,
xdg_surface: *c.wlr_xdg_surface,
map: c.wl_listener,
unmap: c.wl_listener,
destroy: c.wl_listener,
request_move: c.wl_listener,
request_resize: c.wl_listener,
mapped: bool,
x: c_int,
y: c_int,
};
const Keyboard = struct {
link: c.wl_list,
server: *Server,
device: *c.wlr_input_device,
modifiers: c.wl_listener,
key: c.wl_listener,
};
const CursorMode = enum {
Passthrough,
Move,
Resize,
};
fn new_list() c.wl_list {
return c.wl_list{
.prev = null,
.next = null,
};
}
fn new_listener() c.wl_listener {
return c.wl_listener{
.link = new_list(),
.notify = null,
};
}
const RenderData = struct {
output: *c.wlr_output,
renderer: *c.wlr_renderer,
view: *View,
when: *c.struct_timespec,
};
fn render_surface(surface: [*c]c.wlr_surface, sx: c_int, sy: c_int, data: ?*c_void) callconv(.C) void {
// This function is called for every surface that needs to be rendered.
var rdata = @ptrCast(*RenderData, @alignCast(@alignOf(RenderData), data));
var view = rdata.*.view;
var output = rdata.*.output;
// We first obtain a wlr_texture, which is a GPU resource. wlroots
// automatically handles negotiating these with the client. The underlying
// resource could be an opaque handle passed from the client, or the client
// could have sent a pixel buffer which we copied to the GPU, or a few other
// means. You don't have to worry about this, wlroots takes care of it.
var texture = c.wlr_surface_get_texture(surface);
if (texture == null) {
return;
}
// The view has a position in layout coordinates. If you have two displays,
// one next to the other, both 1080p, a view on the rightmost display might
// have layout coordinates of 2000,100. We need to translate that to
// output-local coordinates, or (2000 - 1920).
var ox: f64 = 0.0;
var oy: f64 = 0.0;
c.wlr_output_layout_output_coords(view.*.server.*.output_layout, output, &ox, &oy);
ox += @intToFloat(f64, view.*.x + sx);
oy += @intToFloat(f64, view.*.y + sy);
// We also have to apply the scale factor for HiDPI outputs. This is only
// part of the puzzle, TinyWL does not fully support HiDPI.
var box = c.wlr_box{
.x = @floatToInt(c_int, ox * output.*.scale),
.y = @floatToInt(c_int, oy * output.*.scale),
.width = @floatToInt(c_int, @intToFloat(f32, surface.*.current.width) * output.*.scale),
.height = @floatToInt(c_int, @intToFloat(f32, surface.*.current.height) * output.*.scale),
};
// Those familiar with OpenGL are also familiar with the role of matricies
// in graphics programming. We need to prepare a matrix to render the view
// with. wlr_matrix_project_box is a helper which takes a box with a desired
// x, y coordinates, width and height, and an output geometry, then
// prepares an orthographic projection and multiplies the necessary
// transforms to produce a model-view-projection matrix.
//
// Naturally you can do this any way you like, for example to make a 3D
// compositor.
var matrix: [9]f32 = undefined;
var transform = c.wlr_output_transform_invert(surface.*.current.transform);
c.wlr_matrix_project_box(&matrix, &box, transform, 0.0, &output.*.transform_matrix);
// This takes our matrix, the texture, and an alpha, and performs the actual
// rendering on the GPU.
_ = c.wlr_render_texture_with_matrix(rdata.*.renderer, texture, &matrix, 1.0);
// This lets the client know that we've displayed that frame and it can
// prepare another one now if it likes.
c.wlr_surface_send_frame_done(surface, rdata.*.when);
}
fn output_frame(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// This function is called every time an output is ready to display a frame,
// generally at the output's refresh rate (e.g. 60Hz).
var output = @fieldParentPtr(Output, "frame", listener);
var renderer = output.*.server.*.renderer;
var now: c.struct_timespec = undefined;
_ = c.clock_gettime(c.CLOCK_MONOTONIC, &now);
// wlr_output_attach_render makes the OpenGL context current.
if (!c.wlr_output_attach_render(output.*.wlr_output, null)) {
return;
}
// The "effective" resolution can change if you rotate your outputs.
var width: c_int = undefined;
var height: c_int = undefined;
c.wlr_output_effective_resolution(output.*.wlr_output, &width, &height);
// Begin the renderer (calls glViewport and some other GL sanity checks)
c.wlr_renderer_begin(renderer, width, height);
const color = [_]f32{ 0.3, 0.3, 0.3, 1.0 };
c.wlr_renderer_clear(renderer, &color);
// Each subsequent window we render is rendered on top of the last. Because
// our view list is ordered front-to-back, we iterate over it backwards.
for (output.*.server.views.span()) |*view| {
if (!view.*.mapped) {
// An unmapped view should not be rendered.
continue;
}
var rdata = RenderData{
.output = output.*.wlr_output,
.view = view,
.renderer = renderer,
.when = &now,
};
// This calls our render_surface function for each surface among the
// xdg_surface's toplevel and popups.
c.wlr_xdg_surface_for_each_surface(view.*.xdg_surface, render_surface, &rdata);
}
// Hardware cursors are rendered by the GPU on a separate plane, and can be
// moved around without re-rendering what's beneath them - which is more
// efficient. However, not all hardware supports hardware cursors. For this
// reason, wlroots provides a software fallback, which we ask it to render
// here. wlr_cursor handles configuring hardware vs software cursors for you,
// and this function is a no-op when hardware cursors are in use.
c.wlr_output_render_software_cursors(output.*.wlr_output, null);
// Conclude rendering and swap the buffers, showing the final frame
// on-screen.
c.wlr_renderer_end(renderer);
// TODO: handle failure
_ = c.wlr_output_commit(output.*.wlr_output);
}
fn server_new_output(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
var server = @fieldParentPtr(Server, "new_output", listener);
var wlr_output = @ptrCast(*c.wlr_output, @alignCast(@alignOf(*c.wlr_output), data));
// Some backends don't have modes. DRM+KMS does, and we need to set a mode
// before we can use the output. The mode is a tuple of (width, height,
// refresh rate), and each monitor supports only a specific set of modes. We
// just pick the monitor's preferred mode, a more sophisticated compositor
// would let the user configure it.
// if not empty
if (c.wl_list_empty(&wlr_output.*.modes) == 0) {
var mode = c.wlr_output_preferred_mode(wlr_output);
c.wlr_output_set_mode(wlr_output, mode);
c.wlr_output_enable(wlr_output, true);
if (!c.wlr_output_commit(wlr_output)) {
return;
}
}
// Allocates and configures our state for this output
server.*.outputs.append(Output{
.server = undefined,
.wlr_output = undefined,
.frame = undefined,
}) catch unreachable;
var output = &server.*.outputs.span()[server.*.outputs.span().len - 1];
output.*.wlr_output = wlr_output;
output.*.server = server;
// Sets up a listener for the frame notify event.
output.*.frame.notify = output_frame;
c.wl_signal_add(&wlr_output.*.events.frame, &output.*.frame);
// Adds this to the output layout. The add_auto function arranges outputs
// from left-to-right in the order they appear. A more sophisticated
// compositor would let the user configure the arrangement of outputs in the
// layout.
c.wlr_output_layout_add_auto(server.*.output_layout, wlr_output);
// Creating the global adds a wl_output global to the display, which Wayland
// clients can see to find out information about the output (such as
// DPI, scale factor, manufacturer, etc).
c.wlr_output_create_global(wlr_output);
}
fn focus_view(view: *View, surface: *c.wlr_surface) void {
const server = view.server;
const seat = server.*.seat;
const prev_surface = seat.*.keyboard_state.focused_surface;
if (prev_surface == surface) {
// Don't re-focus an already focused surface.
return;
}
if (prev_surface != null) {
// Deactivate the previously focused surface. This lets the client know
// it no longer has focus and the client will repaint accordingly, e.g.
// stop displaying a caret.
var prev_xdg_surface = c.wlr_xdg_surface_from_wlr_surface(prev_surface);
_ = c.wlr_xdg_toplevel_set_activated(prev_xdg_surface, false);
}
// Find the index
const idx = for (server.*.views.span()) |*v, i| {
if (v == view) {
break i;
}
} else unreachable;
// Move the view to the front
server.*.views.append(server.*.views.orderedRemove(idx)) catch unreachable;
var moved_view = &server.*.views.span()[server.*.views.span().len - 1];
// Activate the new surface
_ = c.wlr_xdg_toplevel_set_activated(moved_view.*.xdg_surface, true);
// Tell the seat to have the keyboard enter this surface. wlroots will keep
// track of this and automatically send key events to the appropriate
// clients without additional work on your part.
var keyboard = c.wlr_seat_get_keyboard(seat);
c.wlr_seat_keyboard_notify_enter(seat, moved_view.*.xdg_surface.*.surface, &keyboard.*.keycodes, keyboard.*.num_keycodes, &keyboard.*.modifiers);
}
fn xdg_surface_map(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// Called when the surface is mapped, or ready to display on-screen.
var view = @fieldParentPtr(View, "map", listener);
view.*.mapped = true;
focus_view(view, view.*.xdg_surface.*.surface);
}
fn xdg_surface_unmap(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
var view = @fieldParentPtr(View, "unmap", listener);
view.*.mapped = false;
}
fn xdg_surface_destroy(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
var view = @fieldParentPtr(View, "destroy", listener);
var server = view.*.server;
const idx = for (server.*.views.span()) |*v, i| {
if (v == view) {
break i;
}
} else return;
_ = server.*.views.orderedRemove(idx);
}
fn xdg_toplevel_request_move(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// ignore for now
}
fn xdg_toplevel_request_resize(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// ignore for now
}
fn server_new_xdg_surface(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// This event is raised when wlr_xdg_shell receives a new xdg surface from a
// client, either a toplevel (application window) or popup.
var server = @fieldParentPtr(Server, "new_xdg_surface", listener);
var xdg_surface = @ptrCast(*c.wlr_xdg_surface, @alignCast(@alignOf(*c.wlr_xdg_surface), data));
if (xdg_surface.*.role != c.enum_wlr_xdg_surface_role.WLR_XDG_SURFACE_ROLE_TOPLEVEL) {
return;
}
// Allocate a View for this surface
server.*.views.append(undefined) catch unreachable;
var view = &server.*.views.span()[server.*.views.span().len - 1];
view.*.server = server;
view.*.xdg_surface = xdg_surface;
// Listen to the various events it can emit
view.*.map.notify = xdg_surface_map;
c.wl_signal_add(&xdg_surface.*.events.map, &view.*.map);
view.*.unmap.notify = xdg_surface_unmap;
c.wl_signal_add(&xdg_surface.*.events.unmap, &view.*.unmap);
view.*.destroy.notify = xdg_surface_destroy;
c.wl_signal_add(&xdg_surface.*.events.destroy, &view.*.destroy);
var toplevel = xdg_surface.*.unnamed_160.toplevel;
view.*.request_move.notify = xdg_toplevel_request_move;
c.wl_signal_add(&toplevel.*.events.request_move, &view.*.request_move);
view.*.request_resize.notify = xdg_toplevel_request_resize;
c.wl_signal_add(&toplevel.*.events.request_resize, &view.*.request_resize);
}
fn keyboard_handle_modifiers(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// This event is raised when a modifier key, such as shift or alt, is
// pressed. We simply communicate this to the client. */
var keyboard = @fieldParentPtr(Keyboard, "modifiers", listener);
// A seat can only have one keyboard, but this is a limitation of the
// Wayland protocol - not wlroots. We assign all connected keyboards to the
// same seat. You can swap out the underlying wlr_keyboard like this and
// wlr_seat handles this transparently.
c.wlr_seat_set_keyboard(keyboard.*.server.*.seat, keyboard.*.device);
// Send modifiers to the client.
c.wlr_seat_keyboard_notify_modifiers(keyboard.*.server.*.seat, &keyboard.*.device.*.unnamed_37.keyboard.*.modifiers);
}
fn handle_keybinding(server: *Server, sym: c.xkb_keysym_t) bool {
// Here we handle compositor keybindings. This is when the compositor is
// processing keys, rather than passing them on to the client for its own
// processing.
//
// This function assumes the proper modifier is held down.
switch (sym) {
c.XKB_KEY_Escape => c.wl_display_terminate(server.*.wl_display),
c.XKB_KEY_F1 => {
// Cycle to the next view
//if (c.wl_list_length(&server.*.views) > 1) {
// const current_view = @fieldParentPtr(View, "link", server.*.views.next);
// const next_view = @fieldParentPtr(View, "link", current_view.*.link.next);
// focus_view(next_view, next_view.*.xdg_surface.*.surface);
// // Move the previous view to the end of the list
// c.wl_list_remove(&current_view.*.link);
// c.wl_list_insert(server.*.views.prev, &current_view.*.link);
//}
},
else => return false,
}
return true;
}
fn keyboard_handle_key(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// This event is raised when a key is pressed or released.
const keyboard = @fieldParentPtr(Keyboard, "key", listener);
const event = @ptrCast(*c.wlr_event_keyboard_key, @alignCast(@alignOf(*c.wlr_event_keyboard_key), data));
const server = keyboard.*.server;
const seat = server.*.seat;
const keyboard_device = keyboard.*.device.*.unnamed_37.keyboard;
// Translate libinput keycode -> xkbcommon
const keycode = event.*.keycode + 8;
// Get a list of keysyms based on the keymap for this keyboard
var syms: [*c]c.xkb_keysym_t = undefined;
const nsyms = c.xkb_state_key_get_syms(keyboard_device.*.xkb_state, keycode, &syms);
var handled = false;
const modifiers = c.wlr_keyboard_get_modifiers(keyboard_device);
if (modifiers & @intCast(u32, c.WLR_MODIFIER_LOGO) != 0 and event.*.state == c.enum_wlr_key_state.WLR_KEY_PRESSED) {
// If mod is held down and this button was _pressed_, we attempt to
// process it as a compositor keybinding.
var i: usize = 0;
while (i < nsyms) {
handled = handle_keybinding(server, syms[i]);
if (handled) {
break;
}
i += 1;
}
}
if (!handled) {
// Otherwise, we pass it along to the client.
c.wlr_seat_set_keyboard(seat, keyboard.*.device);
c.wlr_seat_keyboard_notify_key(seat, event.*.time_msec, event.*.keycode, @intCast(u32, @enumToInt(event.*.state)));
}
}
fn server_new_keyboard(server: *Server, device: *c.wlr_input_device) void {
var keyboard = std.heap.c_allocator.create(Keyboard) catch unreachable;
keyboard.*.server = server;
keyboard.*.device = device;
// We need to prepare an XKB keymap and assign it to the keyboard. This
// assumes the defaults (e.g. layout = "us").
const rules = c.xkb_rule_names{
.rules = null,
.model = null,
.layout = null,
.variant = null,
.options = null,
};
const context = c.xkb_context_new(c.enum_xkb_context_flags.XKB_CONTEXT_NO_FLAGS);
defer c.xkb_context_unref(context);
const keymap = man_c.xkb_map_new_from_names(context, &rules, c.enum_xkb_keymap_compile_flags.XKB_KEYMAP_COMPILE_NO_FLAGS);
defer c.xkb_keymap_unref(keymap);
var keyboard_device = device.*.unnamed_37.keyboard;
c.wlr_keyboard_set_keymap(keyboard_device, keymap);
c.wlr_keyboard_set_repeat_info(keyboard_device, 25, 600);
// Setup listeners for keyboard events
keyboard.*.modifiers.notify = keyboard_handle_modifiers;
c.wl_signal_add(&keyboard_device.*.events.modifiers, &keyboard.*.modifiers);
keyboard.*.key.notify = keyboard_handle_key;
c.wl_signal_add(&keyboard_device.*.events.key, &keyboard.*.key);
c.wlr_seat_set_keyboard(server.*.seat, device);
// And add the keyboard to our list of keyboards
c.wl_list_insert(&server.*.keyboards, &keyboard.*.link);
}
fn server_new_pointer(server: *Server, device: *c.struct_wlr_input_device) void {
// We don't do anything special with pointers. All of our pointer handling
// is proxied through wlr_cursor. On another compositor, you might take this
// opportunity to do libinput configuration on the device to set
// acceleration, etc.
c.wlr_cursor_attach_input_device(server.*.cursor, device);
}
fn server_new_input(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// This event is raised by the backend when a new input device becomes available.
var server = @fieldParentPtr(Server, "new_input", listener);
var device = @ptrCast(*c.wlr_input_device, @alignCast(@alignOf(*c.wlr_input_device), data));
switch (device.*.type) {
.WLR_INPUT_DEVICE_KEYBOARD => server_new_keyboard(server, device),
.WLR_INPUT_DEVICE_POINTER => server_new_pointer(server, device),
else => {},
}
// We need to let the wlr_seat know what our capabilities are, which is
// communiciated to the client. In TinyWL we always have a cursor, even if
// there are no pointer devices, so we always include that capability.
var caps: u32 = @intCast(u32, c.WL_SEAT_CAPABILITY_POINTER);
// if list not empty
if (c.wl_list_empty(&server.*.keyboards) == 0) {
caps |= @intCast(u32, c.WL_SEAT_CAPABILITY_KEYBOARD);
}
c.wlr_seat_set_capabilities(server.*.seat, caps);
}
fn seat_request_cursor(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// This event is rasied by the seat when a client provides a cursor image
var server = @fieldParentPtr(Server, "request_cursor", listener);
var event = @ptrCast(*c.wlr_seat_pointer_request_set_cursor_event, @alignCast(@alignOf(*c.wlr_seat_pointer_request_set_cursor_event), data));
var focused_client = server.*.seat.*.pointer_state.focused_client;
// This can be sent by any client, so we check to make sure this one is
// actually has pointer focus first.
if (focused_client == event.*.seat_client) {
// Once we've vetted the client, we can tell the cursor to use the
// provided surface as the cursor image. It will set the hardware cursor
// on the output that it's currently on and continue to do so as the
// cursor moves between outputs.
c.wlr_cursor_set_surface(server.*.cursor, event.*.surface, event.*.hotspot_x, event.*.hotspot_y);
}
}
fn view_at(view: *View, lx: f64, ly: f64, surface: *?*c.wlr_surface, sx: *f64, sy: *f64) bool {
// XDG toplevels may have nested surfaces, such as popup windows for context
// menus or tooltips. This function tests if any of those are underneath the
// coordinates lx and ly (in output Layout Coordinates). If so, it sets the
// surface pointer to that wlr_surface and the sx and sy coordinates to the
// coordinates relative to that surface's top-left corner.
var view_sx = lx - @intToFloat(f64, view.*.x);
var view_sy = ly - @intToFloat(f64, view.*.y);
// This variable seems to have been unsued in TinyWL
// struct wlr_surface_state *state = &view->xdg_surface->surface->current;
var _sx: f64 = undefined;
var _sy: f64 = undefined;
var _surface = c.wlr_xdg_surface_surface_at(view.*.xdg_surface, view_sx, view_sy, &_sx, &_sy);
if (_surface) |surface_at| {
sx.* = _sx;
sy.* = _sy;
surface.* = surface_at;
return true;
}
return false;
}
fn desktop_view_at(server: *Server, lx: f64, ly: f64, surface: *?*c.wlr_surface, sx: *f64, sy: *f64) ?*View {
// This iterates over all of our surfaces and attempts to find one under the
// cursor. This relies on server.*.views being ordered from top-to-bottom.
for (server.*.views.span()) |*view| {
if (view_at(view, lx, ly, surface, sx, sy)) {
return view;
}
}
return null;
}
fn process_cursor_move(server: *Server, time: u32) void {
// Move the grabbed view to the new position.
server.*.grabbed_view.?.*.x = @floatToInt(c_int, server.*.cursor.*.x - server.*.grab_x);
server.*.grabbed_view.?.*.y = @floatToInt(c_int, server.*.cursor.*.y - server.*.grab_y);
}
fn process_cursor_resize(server: *Server, time: u32) void {
// Resizing the grabbed view can be a little bit complicated, because we
// could be resizing from any corner or edge. This not only resizes the view
// on one or two axes, but can also move the view if you resize from the top
// or left edges (or top-left corner).
//
// Note that I took some shortcuts here. In a more fleshed-out compositor,
// you'd wait for the client to prepare a buffer at the new size, then
// commit any movement that was prepared.
var view = server.*.grabbed_view;
var dx: f64 = (server.*.cursor.*.x - server.*.grab_x);
var dy: f64 = (server.*.cursor.*.y - server.*.grab_y);
var x: f64 = @intToFloat(f64, view.?.*.x);
var y: f64 = @intToFloat(f64, view.?.*.y);
var width = @intToFloat(f64, server.*.grab_width);
var height = @intToFloat(f64, server.*.grab_height);
if (server.*.resize_edges & @intCast(u32, c.WLR_EDGE_TOP) != 0) {
y = server.*.grab_y + dy;
height -= dy;
if (height < 1) {
y += height;
}
} else if (server.*.resize_edges & @intCast(u32, c.WLR_EDGE_BOTTOM) != 0) {
height += dy;
}
if (server.*.resize_edges & @intCast(u32, c.WLR_EDGE_LEFT) != 0) {
x = server.*.grab_x + dx;
width -= dx;
if (width < 1) {
x += width;
}
} else if (server.*.resize_edges & @intCast(u32, c.WLR_EDGE_RIGHT) != 0) {
width += dx;
}
view.?.*.x = @floatToInt(c_int, x);
view.?.*.y = @floatToInt(c_int, y);
_ = c.wlr_xdg_toplevel_set_size(view.?.*.xdg_surface, @floatToInt(u32, width), @floatToInt(u32, height));
}
fn process_cursor_motion(server: *Server, time: u32) void {
// If the mode is non-passthrough, delegate to those functions.
if (server.*.cursor_mode == CursorMode.Move) {
process_cursor_move(server, time);
return;
} else if (server.*.cursor_mode == CursorMode.Resize) {
process_cursor_resize(server, time);
return;
}
// Otherwise, find the view under the pointer and send the event along.
var sx: f64 = undefined;
var sy: f64 = undefined;
var seat = server.*.seat;
var opt_surface: ?*c.wlr_surface = null;
var view = desktop_view_at(server, server.*.cursor.*.x, server.*.cursor.*.y, &opt_surface, &sx, &sy);
if (view == null) {
// If there's no view under the cursor, set the cursor image to a
// default. This is what makes the cursor image appear when you move it
// around the screen, not over any views.
c.wlr_xcursor_manager_set_cursor_image(server.*.cursor_mgr, "left_ptr", server.*.cursor);
}
if (opt_surface) |surface| {
const focus_changed = seat.*.pointer_state.focused_surface != surface;
// "Enter" the surface if necessary. This lets the client know that the
// cursor has entered one of its surfaces.
//
// Note that this gives the surface "pointer focus", which is distinct
// from keyboard focus. You get pointer focus by moving the pointer over
// a window.
c.wlr_seat_pointer_notify_enter(seat, surface, sx, sy);
if (!focus_changed) {
// The enter event contains coordinates, so we only need to notify
// on motion if the focus did not change.
c.wlr_seat_pointer_notify_motion(seat, time, sx, sy);
}
} else {
// Clear pointer focus so future button events and such are not sent to
// the last client to have the cursor over it.
c.wlr_seat_pointer_clear_focus(seat);
}
}
fn server_cursor_motion(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// This event is forwarded by the cursor when a pointer emits a _relative_
// pointer motion event (i.e. a delta)
var server = @fieldParentPtr(Server, "cursor_motion", listener);
var event = @ptrCast(*c.wlr_event_pointer_motion, @alignCast(@alignOf(*c.wlr_event_pointer_motion), data));
// The cursor doesn't move unless we tell it to. The cursor automatically
// handles constraining the motion to the output layout, as well as any
// special configuration applied for the specific input device which
// generated the event. You can pass NULL for the device if you want to move
// the cursor around without any input.
c.wlr_cursor_move(server.*.cursor, event.*.device, event.*.delta_x, event.*.delta_y);
process_cursor_motion(server, event.*.time_msec);
}
fn server_cursor_motion_absolute(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// This event is forwarded by the cursor when a pointer emits an _absolute_
// motion event, from 0..1 on each axis. This happens, for example, when
// wlroots is running under a Wayland window rather than KMS+DRM, and you
// move the mouse over the window. You could enter the window from any edge,
// so we have to warp the mouse there. There is also some hardware which
// emits these events.
var server = @fieldParentPtr(Server, "cursor_motion_absolute", listener);
var event = @ptrCast(*c.wlr_event_pointer_motion_absolute, @alignCast(@alignOf(*c.wlr_event_pointer_motion_absolute), data));
c.wlr_cursor_warp_absolute(server.*.cursor, event.*.device, event.*.x, event.*.y);
process_cursor_motion(server, event.*.time_msec);
}
fn server_cursor_button(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// This event is forwarded by the cursor when a pointer emits a button
// event.
var server = @fieldParentPtr(Server, "cursor_button", listener);
var event = @ptrCast(*c.wlr_event_pointer_button, @alignCast(@alignOf(*c.wlr_event_pointer_button), data));
// Notify the client with pointer focus that a button press has occurred
_ = c.wlr_seat_pointer_notify_button(server.*.seat, event.*.time_msec, event.*.button, event.*.state);
var sx: f64 = undefined;
var sy: f64 = undefined;
var surface: ?*c.wlr_surface = null;
var view = desktop_view_at(server, server.*.cursor.*.x, server.*.cursor.*.y, &surface, &sx, &sy);
if (event.*.state == c.enum_wlr_button_state.WLR_BUTTON_RELEASED) {
// If you released any buttons, we exit interactive move/resize mode.
server.*.cursor_mode = CursorMode.Passthrough;
} else {
// Focus that client if the button was _pressed_
if (view) |v| {
focus_view(v, surface.?);
}
}
}
fn server_cursor_axis(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// This event is forwarded by the cursor when a pointer emits an axis event,
// for example when you move the scroll wheel.
var server = @fieldParentPtr(Server, "cursor_axis", listener);
var event = @ptrCast(*c.wlr_event_pointer_axis, @alignCast(@alignOf(*c.wlr_event_pointer_axis), data));
// Notify the client with pointer focus of the axis event.
c.wlr_seat_pointer_notify_axis(server.*.seat, event.*.time_msec, event.*.orientation, event.*.delta, event.*.delta_discrete, event.*.source);
}
fn server_cursor_frame(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// This event is forwarded by the cursor when a pointer emits an frame
// event. Frame events are sent after regular pointer events to group
// multiple events together. For instance, two axis events may happen at the
// same time, in which case a frame event won't be sent in between.
var server = @fieldParentPtr(Server, "cursor_frame", listener);
// Notify the client with pointer focus of the frame event.
c.wlr_seat_pointer_notify_frame(server.*.seat);
}
const ZagError = error{ const ZagError = error{
InitError, InitError,
CantAddSocket, CantAddSocket,
@ -727,32 +15,6 @@ pub fn main() !void {
c.wlr_log_init(c.enum_wlr_log_importance.WLR_DEBUG, null); c.wlr_log_init(c.enum_wlr_log_importance.WLR_DEBUG, null);
var server: Server = undefined; var server: Server = undefined;
// The Wayland display is managed by libwayland. It handles accepting
// clients from the Unix socket, manging Wayland globals, and so on.
server.wl_display = c.wl_display_create() orelse return ZagError.InitError;
// The backend is a wlroots feature which abstracts the underlying input and
// output hardware. The autocreate option will choose the most suitable
// backend based on the current environment, such as opening an X11 window
// if an X11 server is running. The NULL argument here optionally allows you
// to pass in a custom renderer if wlr_renderer doesn't meet your needs. The
// backend uses the renderer, for example, to fall back to software cursors
// if the backend does not support hardware cursors (some older GPUs
// don't).
server.backend = c.zag_wlr_backend_autocreate(server.wl_display) orelse return ZagError.InitError;
// If we don't provide a renderer, autocreate makes a GLES2 renderer for us.
// The renderer is responsible for defining the various pixel formats it
// supports for shared memory, this configures that for clients.
server.renderer = c.zag_wlr_backend_get_renderer(server.backend);
c.wlr_renderer_init_wl_display(server.renderer, server.wl_display);
// This creates some hands-off wlroots interfaces. The compositor is
// necessary for clients to allocate surfaces and the data device manager
// handles the clipboard. Each of these wlroots interfaces has room for you
// to dig your fingers in and play with their behavior if you want.
_ = c.wlr_compositor_create(server.wl_display, server.renderer);
_ = c.wlr_data_device_manager_create(server.wl_display);
// Creates an output layout, which a wlroots utility for working with an // Creates an output layout, which a wlroots utility for working with an
// arrangement of screens in a physical layout. // arrangement of screens in a physical layout.
@ -773,54 +35,6 @@ pub fn main() !void {
server.new_xdg_surface.notify = server_new_xdg_surface; server.new_xdg_surface.notify = server_new_xdg_surface;
c.wl_signal_add(&server.xdg_shell.*.events.new_surface, &server.new_xdg_surface); c.wl_signal_add(&server.xdg_shell.*.events.new_surface, &server.new_xdg_surface);
// Creates a cursor, which is a wlroots utility for tracking the cursor
// image shown on screen.
server.cursor = c.wlr_cursor_create();
c.wlr_cursor_attach_output_layout(server.cursor, server.output_layout);
// Creates an xcursor manager, another wlroots utility which loads up
// Xcursor themes to source cursor images from and makes sure that cursor
// images are available at all scale factors on the screen (necessary for
// HiDPI support). We add a cursor theme at scale factor 1 to begin with.
server.cursor_mgr = c.wlr_xcursor_manager_create(null, 24);
_ = c.wlr_xcursor_manager_load(server.cursor_mgr, 1);
// wlr_cursor *only* displays an image on screen. It does not move around
// when the pointer moves. However, we can attach input devices to it, and
// it will generate aggregate events for all of them. In these events, we
// can choose how we want to process them, forwarding them to clients and
// moving the cursor around. More detail on this process is described in my
// input handling blog post:
//
// https://drewdevault.com/2018/07/17/Input-handling-in-wlroots.html
//
// And more comments are sprinkled throughout the notify functions above.
server.cursor_motion.notify = server_cursor_motion;
c.wl_signal_add(&server.cursor.*.events.motion, &server.cursor_motion);
server.cursor_motion_absolute.notify = server_cursor_motion_absolute;
c.wl_signal_add(&server.cursor.*.events.motion_absolute, &server.cursor_motion_absolute);
server.cursor_button.notify = server_cursor_button;
c.wl_signal_add(&server.cursor.*.events.button, &server.cursor_button);
server.cursor_axis.notify = server_cursor_axis;
c.wl_signal_add(&server.cursor.*.events.axis, &server.cursor_axis);
server.cursor_frame.notify = server_cursor_frame;
c.wl_signal_add(&server.cursor.*.events.frame, &server.cursor_frame);
// Configures a seat, which is a single "seat" at which a user sits and
// operates the computer. This conceptually includes up to one keyboard,
// pointer, touch, and drawing tablet device. We also rig up a listener to
// let us know when new input devices are available on the backend.
c.wl_list_init(&server.keyboards);
server.new_input.notify = server_new_input;
c.wl_signal_add(&server.backend.*.events.new_input, &server.new_input);
server.seat = c.wlr_seat_create(server.wl_display, "seat0");
server.request_cursor.notify = seat_request_cursor;
c.wl_signal_add(&server.seat.*.events.request_set_cursor, &server.request_cursor);
// Add a Unix socket to the Wayland display. // Add a Unix socket to the Wayland display.
const socket = c.wl_display_add_socket_auto(server.wl_display); const socket = c.wl_display_add_socket_auto(server.wl_display);
if (socket == null) { if (socket == null) {

110
src/output.zig Normal file
View file

@ -0,0 +1,110 @@
const std = @import("std");
const c = @import("c.zig").c;
const Output = struct {
server: *Server,
wlr_output: *c.wlr_output,
frame: c.wl_listener,
};
fn output_frame(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// This function is called every time an output is ready to display a frame,
// generally at the output's refresh rate (e.g. 60Hz).
var output = @fieldParentPtr(Output, "frame", listener);
var renderer = output.*.server.*.renderer;
var now: c.struct_timespec = undefined;
_ = c.clock_gettime(c.CLOCK_MONOTONIC, &now);
// wlr_output_attach_render makes the OpenGL context current.
if (!c.wlr_output_attach_render(output.*.wlr_output, null)) {
return;
}
// The "effective" resolution can change if you rotate your outputs.
var width: c_int = undefined;
var height: c_int = undefined;
c.wlr_output_effective_resolution(output.*.wlr_output, &width, &height);
// Begin the renderer (calls glViewport and some other GL sanity checks)
c.wlr_renderer_begin(renderer, width, height);
const color = [_]f32{ 0.3, 0.3, 0.3, 1.0 };
c.wlr_renderer_clear(renderer, &color);
// Each subsequent window we render is rendered on top of the last. Because
// our view list is ordered front-to-back, we iterate over it backwards.
for (output.*.server.views.span()) |*view| {
if (!view.*.mapped) {
// An unmapped view should not be rendered.
continue;
}
var rdata = RenderData{
.output = output.*.wlr_output,
.view = view,
.renderer = renderer,
.when = &now,
};
// This calls our render_surface function for each surface among the
// xdg_surface's toplevel and popups.
c.wlr_xdg_surface_for_each_surface(view.*.xdg_surface, render_surface, &rdata);
}
// Hardware cursors are rendered by the GPU on a separate plane, and can be
// moved around without re-rendering what's beneath them - which is more
// efficient. However, not all hardware supports hardware cursors. For this
// reason, wlroots provides a software fallback, which we ask it to render
// here. wlr_cursor handles configuring hardware vs software cursors for you,
// and this function is a no-op when hardware cursors are in use.
c.wlr_output_render_software_cursors(output.*.wlr_output, null);
// Conclude rendering and swap the buffers, showing the final frame
// on-screen.
c.wlr_renderer_end(renderer);
// TODO: handle failure
_ = c.wlr_output_commit(output.*.wlr_output);
}
fn server_new_output(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
var server = @fieldParentPtr(Server, "new_output", listener);
var wlr_output = @ptrCast(*c.wlr_output, @alignCast(@alignOf(*c.wlr_output), data));
// Some backends don't have modes. DRM+KMS does, and we need to set a mode
// before we can use the output. The mode is a tuple of (width, height,
// refresh rate), and each monitor supports only a specific set of modes. We
// just pick the monitor's preferred mode, a more sophisticated compositor
// would let the user configure it.
// if not empty
if (c.wl_list_empty(&wlr_output.*.modes) == 0) {
var mode = c.wlr_output_preferred_mode(wlr_output);
c.wlr_output_set_mode(wlr_output, mode);
c.wlr_output_enable(wlr_output, true);
if (!c.wlr_output_commit(wlr_output)) {
return;
}
}
// Allocates and configures our state for this output
server.*.outputs.append(Output{
.server = undefined,
.wlr_output = undefined,
.frame = undefined,
}) catch unreachable;
var output = &server.*.outputs.span()[server.*.outputs.span().len - 1];
output.*.wlr_output = wlr_output;
output.*.server = server;
// Sets up a listener for the frame notify event.
output.*.frame.notify = output_frame;
c.wl_signal_add(&wlr_output.*.events.frame, &output.*.frame);
// Adds this to the output layout. The add_auto function arranges outputs
// from left-to-right in the order they appear. A more sophisticated
// compositor would let the user configure the arrangement of outputs in the
// layout.
c.wlr_output_layout_add_auto(server.*.output_layout, wlr_output);
// Creating the global adds a wl_output global to the display, which Wayland
// clients can see to find out information about the output (such as
// DPI, scale factor, manufacturer, etc).
c.wlr_output_create_global(wlr_output);
}

63
src/render.zig Normal file
View file

@ -0,0 +1,63 @@
const RenderData = struct {
output: *c.wlr_output,
renderer: *c.wlr_renderer,
view: *View,
when: *c.struct_timespec,
};
fn render_surface(surface: [*c]c.wlr_surface, sx: c_int, sy: c_int, data: ?*c_void) callconv(.C) void {
// This function is called for every surface that needs to be rendered.
var rdata = @ptrCast(*RenderData, @alignCast(@alignOf(RenderData), data));
var view = rdata.*.view;
var output = rdata.*.output;
// We first obtain a wlr_texture, which is a GPU resource. wlroots
// automatically handles negotiating these with the client. The underlying
// resource could be an opaque handle passed from the client, or the client
// could have sent a pixel buffer which we copied to the GPU, or a few other
// means. You don't have to worry about this, wlroots takes care of it.
var texture = c.wlr_surface_get_texture(surface);
if (texture == null) {
return;
}
// The view has a position in layout coordinates. If you have two displays,
// one next to the other, both 1080p, a view on the rightmost display might
// have layout coordinates of 2000,100. We need to translate that to
// output-local coordinates, or (2000 - 1920).
var ox: f64 = 0.0;
var oy: f64 = 0.0;
c.wlr_output_layout_output_coords(view.*.server.*.output_layout, output, &ox, &oy);
ox += @intToFloat(f64, view.*.x + sx);
oy += @intToFloat(f64, view.*.y + sy);
// We also have to apply the scale factor for HiDPI outputs. This is only
// part of the puzzle, TinyWL does not fully support HiDPI.
var box = c.wlr_box{
.x = @floatToInt(c_int, ox * output.*.scale),
.y = @floatToInt(c_int, oy * output.*.scale),
.width = @floatToInt(c_int, @intToFloat(f32, surface.*.current.width) * output.*.scale),
.height = @floatToInt(c_int, @intToFloat(f32, surface.*.current.height) * output.*.scale),
};
// Those familiar with OpenGL are also familiar with the role of matricies
// in graphics programming. We need to prepare a matrix to render the view
// with. wlr_matrix_project_box is a helper which takes a box with a desired
// x, y coordinates, width and height, and an output geometry, then
// prepares an orthographic projection and multiplies the necessary
// transforms to produce a model-view-projection matrix.
//
// Naturally you can do this any way you like, for example to make a 3D
// compositor.
var matrix: [9]f32 = undefined;
var transform = c.wlr_output_transform_invert(surface.*.current.transform);
c.wlr_matrix_project_box(&matrix, &box, transform, 0.0, &output.*.transform_matrix);
// This takes our matrix, the texture, and an alpha, and performs the actual
// rendering on the GPU.
_ = c.wlr_render_texture_with_matrix(rdata.*.renderer, texture, &matrix, 1.0);
// This lets the client know that we've displayed that frame and it can
// prepare another one now if it likes.
c.wlr_surface_send_frame_done(surface, rdata.*.when);
}

71
src/seat.zig Normal file
View file

@ -0,0 +1,71 @@
const std = @import("std");
const c = @import("c.zig").c;
// TODO: InputManager and multi-seat support
pub const Seat = struct {
server: *Server,
wlr_seat: *c.wlr_seat,
listen_new_input: c.wl_listener,
// Multiple mice are handled by the same Cursor
cursor: Cursor,
// Mulitple keyboards are handled separately
keyboards: std.ArrayList(Keyboard),
pub fn init(server: *Server, allocator: *std.mem.Allocator) @This() {
var seat = @This(){
.server = server,
// This seems to be the default seat name used by compositors
.wlr_seat = c.wlr_seat_create(server.*.wl_display, "seat0"),
.cursor = undefined,
.keyboards = std.ArrayList(Keyboard).init(allocator),
.listen_new_input = c.wl_listener{
.link = undefined,
.notify = handle_new_input,
},
};
seat.cursor = cursor.Cursor.init(server);
// Set up handler for all new input devices made available. This
// includes keyboards, pointers, touch, etc.
c.wl_signal_add(&server.*.backend.*.events.new_input, &seat.new_input);
}
fn add_keyboard(self: *@This(), device: *c.wlr_input_device) void {
self.keyboards.append(Keyboard.init(self, device));
c.wlr_seat_set_keyboard(self, device);
}
fn add_pointer(self: *@This(), device: *c.struct_wlr_input_device) void {
// We don't do anything special with pointers. All of our pointer handling
// is proxied through wlr_cursor. On another compositor, you might take this
// opportunity to do libinput configuration on the device to set
// acceleration, etc.
c.wlr_cursor_attach_input_device(self.cursor.wlr_cursor, device);
}
fn handle_new_input(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// This event is raised by the backend when a new input device becomes available.
var seat = @fieldParentPtr(Seat, "listen_new_input", listener);
var device = @ptrCast(*c.wlr_input_device, @alignCast(@alignOf(*c.wlr_input_device), data));
switch (device.*.type) {
.WLR_INPUT_DEVICE_KEYBOARD => seat.add_keyboard(device),
.WLR_INPUT_DEVICE_POINTER => seat.add_pointer(device),
else => {},
}
// We need to let the wlr_seat know what our capabilities are, which is
// communiciated to the client. In TinyWL we always have a cursor, even if
// there are no pointer devices, so we always include that capability.
var caps: u32 = @intCast(u32, c.WL_SEAT_CAPABILITY_POINTER);
// if list not empty
if (c.wl_list_empty(&server.*.keyboards) == 0) {
caps |= @intCast(u32, c.WL_SEAT_CAPABILITY_KEYBOARD);
}
c.wlr_seat_set_capabilities(server.*.seat, caps);
}
};

71
src/server.zig Normal file
View file

@ -0,0 +1,71 @@
const std = @import("std");
const c = @import("c.zig").c;
pub const Server = struct {
wl_display: *c.wl_display,
backend: *c.wlr_backend,
renderer: *c.wlr_renderer,
xdg_shell: *c.wlr_xdg_shell,
new_xdg_surface: c.wl_listener,
views: std.ArrayList(View),
output_layout: *c.wlr_output_layout,
outputs: std.ArrayList(Output),
new_output: c.wl_listener,
pub fn init(allocator: *std.mem.Allocator) !@This() {
var server: @This() = undefined;
// The Wayland display is managed by libwayland. It handles accepting
// clients from the Unix socket, manging Wayland globals, and so on.
server.wl_display = c.wl_display_create() orelse return error.CantCreateWlDisplay;
// The backend is a wlroots feature which abstracts the underlying input and
// output hardware. The autocreate option will choose the most suitable
// backend based on the current environment, such as opening an X11 window
// if an X11 server is running. The NULL argument here optionally allows you
// to pass in a custom renderer if wlr_renderer doesn't meet your needs. The
// backend uses the renderer, for example, to fall back to software cursors
// if the backend does not support hardware cursors (some older GPUs
// don't).
server.backend = c.zag_wlr_backend_autocreate(server.wl_display) orelse return error.CantCreateWlrBackend;
// If we don't provide a renderer, autocreate makes a GLES2 renderer for us.
// The renderer is responsible for defining the various pixel formats it
// supports for shared memory, this configures that for clients.
server.renderer = c.zag_wlr_backend_get_renderer(server.backend) orelse return error.CantGetWlrRenderer;
c.wlr_renderer_init_wl_display(server.renderer, server.wl_display) orelse return error.CantInitWlDisplay;
// This creates some hands-off wlroots interfaces. The compositor is
// necessary for clients to allocate surfaces and the data device manager
// handles the clipboard. Each of these wlroots interfaces has room for you
// to dig your fingers in and play with their behavior if you want.
_ = c.wlr_compositor_create(server.wl_display, server.renderer) orelse return error.CantCreateWlrCompositor;
_ = c.wlr_data_device_manager_create(server.wl_display) orelse return error.CantCreateWlrDataDeviceManager;
}
pub fn handle_keybinding(self: *@This(), sym: c.xkb_keysym_t) bool {
// Here we handle compositor keybindings. This is when the compositor is
// processing keys, rather than passing them on to the client for its own
// processing.
//
// This function assumes the proper modifier is held down.
switch (sym) {
c.XKB_KEY_Escape => c.wl_display_terminate(server.*.wl_display),
c.XKB_KEY_F1 => {
// Cycle to the next view
//if (c.wl_list_length(&server.*.views) > 1) {
// const current_view = @fieldParentPtr(View, "link", server.*.views.next);
// const next_view = @fieldParentPtr(View, "link", current_view.*.link.next);
// focus_view(next_view, next_view.*.xdg_surface.*.surface);
// // Move the previous view to the end of the list
// c.wl_list_remove(&current_view.*.link);
// c.wl_list_insert(server.*.views.prev, &current_view.*.link);
//}
},
else => return false,
}
return true;
}
};

92
src/view.zig Normal file
View file

@ -0,0 +1,92 @@
const std = @import("std");
const c = @import("c.zig").c;
pub const View = struct {
server: *Server,
xdg_surface: *c.wlr_xdg_surface,
map: c.wl_listener,
unmap: c.wl_listener,
destroy: c.wl_listener,
request_move: c.wl_listener,
request_resize: c.wl_listener,
mapped: bool,
x: c_int,
y: c_int,
};
fn focus_view(view: *View, surface: *c.wlr_surface) void {
const server = view.server;
const seat = server.*.seat;
const prev_surface = seat.*.keyboard_state.focused_surface;
if (prev_surface == surface) {
// Don't re-focus an already focused surface.
return;
}
if (prev_surface != null) {
// Deactivate the previously focused surface. This lets the client know
// it no longer has focus and the client will repaint accordingly, e.g.
// stop displaying a caret.
var prev_xdg_surface = c.wlr_xdg_surface_from_wlr_surface(prev_surface);
_ = c.wlr_xdg_toplevel_set_activated(prev_xdg_surface, false);
}
// Find the index
const idx = for (server.*.views.span()) |*v, i| {
if (v == view) {
break i;
}
} else unreachable;
// Move the view to the front
server.*.views.append(server.*.views.orderedRemove(idx)) catch unreachable;
var moved_view = &server.*.views.span()[server.*.views.span().len - 1];
// Activate the new surface
_ = c.wlr_xdg_toplevel_set_activated(moved_view.*.xdg_surface, true);
// Tell the seat to have the keyboard enter this surface. wlroots will keep
// track of this and automatically send key events to the appropriate
// clients without additional work on your part.
var keyboard = c.wlr_seat_get_keyboard(seat);
c.wlr_seat_keyboard_notify_enter(seat, moved_view.*.xdg_surface.*.surface, &keyboard.*.keycodes, keyboard.*.num_keycodes, &keyboard.*.modifiers);
}
fn view_at(view: *View, lx: f64, ly: f64, surface: *?*c.wlr_surface, sx: *f64, sy: *f64) bool {
// XDG toplevels may have nested surfaces, such as popup windows for context
// menus or tooltips. This function tests if any of those are underneath the
// coordinates lx and ly (in output Layout Coordinates). If so, it sets the
// surface pointer to that wlr_surface and the sx and sy coordinates to the
// coordinates relative to that surface's top-left corner.
var view_sx = lx - @intToFloat(f64, view.*.x);
var view_sy = ly - @intToFloat(f64, view.*.y);
// This variable seems to have been unsued in TinyWL
// struct wlr_surface_state *state = &view->xdg_surface->surface->current;
var _sx: f64 = undefined;
var _sy: f64 = undefined;
var _surface = c.wlr_xdg_surface_surface_at(view.*.xdg_surface, view_sx, view_sy, &_sx, &_sy);
if (_surface) |surface_at| {
sx.* = _sx;
sy.* = _sy;
surface.* = surface_at;
return true;
}
return false;
}
fn desktop_view_at(server: *Server, lx: f64, ly: f64, surface: *?*c.wlr_surface, sx: *f64, sy: *f64) ?*View {
// This iterates over all of our surfaces and attempts to find one under the
// cursor. This relies on server.*.views being ordered from top-to-bottom.
for (server.*.views.span()) |*view| {
if (view_at(view, lx, ly, surface, sx, sy)) {
return view;
}
}
return null;
}

68
src/xdg_shell.zig Normal file
View file

@ -0,0 +1,68 @@
const std = @import("std");
const c = @import("c.zig").c;
fn xdg_surface_map(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// Called when the surface is mapped, or ready to display on-screen.
var view = @fieldParentPtr(View, "map", listener);
view.*.mapped = true;
focus_view(view, view.*.xdg_surface.*.surface);
}
fn xdg_surface_unmap(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
var view = @fieldParentPtr(View, "unmap", listener);
view.*.mapped = false;
}
fn xdg_surface_destroy(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
var view = @fieldParentPtr(View, "destroy", listener);
var server = view.*.server;
const idx = for (server.*.views.span()) |*v, i| {
if (v == view) {
break i;
}
} else return;
_ = server.*.views.orderedRemove(idx);
}
fn xdg_toplevel_request_move(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// ignore for now
}
fn xdg_toplevel_request_resize(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// ignore for now
}
fn server_new_xdg_surface(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void {
// This event is raised when wlr_xdg_shell receives a new xdg surface from a
// client, either a toplevel (application window) or popup.
var server = @fieldParentPtr(Server, "new_xdg_surface", listener);
var xdg_surface = @ptrCast(*c.wlr_xdg_surface, @alignCast(@alignOf(*c.wlr_xdg_surface), data));
if (xdg_surface.*.role != c.enum_wlr_xdg_surface_role.WLR_XDG_SURFACE_ROLE_TOPLEVEL) {
return;
}
// Allocate a View for this surface
server.*.views.append(undefined) catch unreachable;
var view = &server.*.views.span()[server.*.views.span().len - 1];
view.*.server = server;
view.*.xdg_surface = xdg_surface;
// Listen to the various events it can emit
view.*.map.notify = xdg_surface_map;
c.wl_signal_add(&xdg_surface.*.events.map, &view.*.map);
view.*.unmap.notify = xdg_surface_unmap;
c.wl_signal_add(&xdg_surface.*.events.unmap, &view.*.unmap);
view.*.destroy.notify = xdg_surface_destroy;
c.wl_signal_add(&xdg_surface.*.events.destroy, &view.*.destroy);
var toplevel = xdg_surface.*.unnamed_160.toplevel;
view.*.request_move.notify = xdg_toplevel_request_move;
c.wl_signal_add(&toplevel.*.events.request_move, &view.*.request_move);
view.*.request_resize.notify = xdg_toplevel_request_resize;
c.wl_signal_add(&toplevel.*.events.request_resize, &view.*.request_resize);
}