diff --git a/src/output.zig b/src/output.zig index c345bdd..fa61fe4 100644 --- a/src/output.zig +++ b/src/output.zig @@ -1,6 +1,13 @@ const std = @import("std"); const c = @import("c.zig").c; +const RenderData = struct { + output: *c.wlr_output, + renderer: *c.wlr_renderer, + view: *View, + when: *c.struct_timespec, +}; + const Output = struct { server: *Server, wlr_output: *c.wlr_output, @@ -72,8 +79,7 @@ const Output = struct { const color = [_]f32{ 0.3, 0.3, 0.3, 1.0 }; c.wlr_renderer_clear(renderer, &color); - // Each subsequent window we render is rendered on top of the last. Because - // our view list is ordered front-to-back, we iterate over it backwards. + // Each subsequent view is rendered on top of the last. for (output.*.server.views.span()) |*view| { if (!view.*.mapped) { // An unmapped view should not be rendered. @@ -104,4 +110,61 @@ const Output = struct { // TODO: handle failure _ = c.wlr_output_commit(output.*.wlr_output); } + + fn render_surface(surface: [*c]c.wlr_surface, sx: c_int, sy: c_int, data: ?*c_void) callconv(.C) void { + // This function is called for every surface that needs to be rendered. + var rdata = @ptrCast(*RenderData, @alignCast(@alignOf(RenderData), data)); + var view = rdata.*.view; + var output = rdata.*.output; + + // We first obtain a wlr_texture, which is a GPU resource. wlroots + // automatically handles negotiating these with the client. The underlying + // resource could be an opaque handle passed from the client, or the client + // could have sent a pixel buffer which we copied to the GPU, or a few other + // means. You don't have to worry about this, wlroots takes care of it. + var texture = c.wlr_surface_get_texture(surface); + if (texture == null) { + return; + } + + // The view has a position in layout coordinates. If you have two displays, + // one next to the other, both 1080p, a view on the rightmost display might + // have layout coordinates of 2000,100. We need to translate that to + // output-local coordinates, or (2000 - 1920). + var ox: f64 = 0.0; + var oy: f64 = 0.0; + c.wlr_output_layout_output_coords(view.*.server.*.output_layout, output, &ox, &oy); + ox += @intToFloat(f64, view.*.x + sx); + oy += @intToFloat(f64, view.*.y + sy); + + // We also have to apply the scale factor for HiDPI outputs. This is only + // part of the puzzle, TinyWL does not fully support HiDPI. + var box = c.wlr_box{ + .x = @floatToInt(c_int, ox * output.*.scale), + .y = @floatToInt(c_int, oy * output.*.scale), + .width = @floatToInt(c_int, @intToFloat(f32, surface.*.current.width) * output.*.scale), + .height = @floatToInt(c_int, @intToFloat(f32, surface.*.current.height) * output.*.scale), + }; + + // Those familiar with OpenGL are also familiar with the role of matricies + // in graphics programming. We need to prepare a matrix to render the view + // with. wlr_matrix_project_box is a helper which takes a box with a desired + // x, y coordinates, width and height, and an output geometry, then + // prepares an orthographic projection and multiplies the necessary + // transforms to produce a model-view-projection matrix. + // + // Naturally you can do this any way you like, for example to make a 3D + // compositor. + var matrix: [9]f32 = undefined; + var transform = c.wlr_output_transform_invert(surface.*.current.transform); + c.wlr_matrix_project_box(&matrix, &box, transform, 0.0, &output.*.transform_matrix); + + // This takes our matrix, the texture, and an alpha, and performs the actual + // rendering on the GPU. + _ = c.wlr_render_texture_with_matrix(rdata.*.renderer, texture, &matrix, 1.0); + + // This lets the client know that we've displayed that frame and it can + // prepare another one now if it likes. + c.wlr_surface_send_frame_done(surface, rdata.*.when); + } }; diff --git a/src/render.zig b/src/render.zig deleted file mode 100644 index dc03de1..0000000 --- a/src/render.zig +++ /dev/null @@ -1,63 +0,0 @@ -const RenderData = struct { - output: *c.wlr_output, - renderer: *c.wlr_renderer, - view: *View, - when: *c.struct_timespec, -}; - -fn render_surface(surface: [*c]c.wlr_surface, sx: c_int, sy: c_int, data: ?*c_void) callconv(.C) void { - // This function is called for every surface that needs to be rendered. - var rdata = @ptrCast(*RenderData, @alignCast(@alignOf(RenderData), data)); - var view = rdata.*.view; - var output = rdata.*.output; - - // We first obtain a wlr_texture, which is a GPU resource. wlroots - // automatically handles negotiating these with the client. The underlying - // resource could be an opaque handle passed from the client, or the client - // could have sent a pixel buffer which we copied to the GPU, or a few other - // means. You don't have to worry about this, wlroots takes care of it. - var texture = c.wlr_surface_get_texture(surface); - if (texture == null) { - return; - } - - // The view has a position in layout coordinates. If you have two displays, - // one next to the other, both 1080p, a view on the rightmost display might - // have layout coordinates of 2000,100. We need to translate that to - // output-local coordinates, or (2000 - 1920). - var ox: f64 = 0.0; - var oy: f64 = 0.0; - c.wlr_output_layout_output_coords(view.*.server.*.output_layout, output, &ox, &oy); - ox += @intToFloat(f64, view.*.x + sx); - oy += @intToFloat(f64, view.*.y + sy); - - // We also have to apply the scale factor for HiDPI outputs. This is only - // part of the puzzle, TinyWL does not fully support HiDPI. - var box = c.wlr_box{ - .x = @floatToInt(c_int, ox * output.*.scale), - .y = @floatToInt(c_int, oy * output.*.scale), - .width = @floatToInt(c_int, @intToFloat(f32, surface.*.current.width) * output.*.scale), - .height = @floatToInt(c_int, @intToFloat(f32, surface.*.current.height) * output.*.scale), - }; - - // Those familiar with OpenGL are also familiar with the role of matricies - // in graphics programming. We need to prepare a matrix to render the view - // with. wlr_matrix_project_box is a helper which takes a box with a desired - // x, y coordinates, width and height, and an output geometry, then - // prepares an orthographic projection and multiplies the necessary - // transforms to produce a model-view-projection matrix. - // - // Naturally you can do this any way you like, for example to make a 3D - // compositor. - var matrix: [9]f32 = undefined; - var transform = c.wlr_output_transform_invert(surface.*.current.transform); - c.wlr_matrix_project_box(&matrix, &box, transform, 0.0, &output.*.transform_matrix); - - // This takes our matrix, the texture, and an alpha, and performs the actual - // rendering on the GPU. - _ = c.wlr_render_texture_with_matrix(rdata.*.renderer, texture, &matrix, 1.0); - - // This lets the client know that we've displayed that frame and it can - // prepare another one now if it likes. - c.wlr_surface_send_frame_done(surface, rdata.*.when); -}