const Self = @This(); const std = @import("std"); const c = @import("c.zig"); const Config = @import("config.zig"); const DecorationManager = @import("decoration_manager.zig"); const InputManager = @import("input_manager.zig"); const Log = @import("log.zig").Log; const Output = @import("output.zig"); const Root = @import("root.zig"); const View = @import("view.zig"); const ViewStack = @import("view_stack.zig").ViewStack; allocator: *std.mem.Allocator, wl_display: *c.wl_display, wl_event_loop: *c.wl_event_loop, wlr_backend: *c.wlr_backend, noop_backend: *c.wlr_backend, wlr_renderer: *c.wlr_renderer, wlr_xdg_shell: *c.wlr_xdg_shell, wlr_layer_shell: *c.wlr_layer_shell_v1, decoration_manager: DecorationManager, input_manager: InputManager, root: Root, config: Config, listen_new_output: c.wl_listener, listen_new_xdg_surface: c.wl_listener, listen_new_layer_surface: c.wl_listener, pub fn init(self: *Self, allocator: *std.mem.Allocator) !void { self.allocator = allocator; // The Wayland display is managed by libwayland. It handles accepting // clients from the Unix socket, managing Wayland globals, and so on. self.wl_display = c.wl_display_create() orelse return error.CantCreateWlDisplay; errdefer c.wl_display_destroy(self.wl_display); // Should never return null if the display was created successfully self.wl_event_loop = c.wl_display_get_event_loop(self.wl_display) orelse return error.CantGetEventLoop; // The wlr_backend abstracts the input/output hardware. Autocreate chooses // the best option based on the environment, for example DRM when run from // a tty or wayland if WAYLAND_DISPLAY is set. This frees itself when the // wl_display is destroyed. self.wlr_backend = c.river_wlr_backend_autocreate(self.wl_display) orelse return error.CantCreateWlrBackend; // This backend is used to create a noop output for use when no actual // outputs are available. This frees itself when the wl_display is destroyed. self.noop_backend = c.river_wlr_noop_backend_create(self.wl_display) orelse return error.CantCreateNoopBackend; // If we don't provide a renderer, autocreate makes a GLES2 renderer for us. // The renderer is responsible for defining the various pixel formats it // supports for shared memory, this configures that for clients. self.wlr_renderer = c.river_wlr_backend_get_renderer(self.wlr_backend) orelse return error.CantGetWlrRenderer; // TODO: Handle failure after https://github.com/swaywm/wlroots/pull/2080 c.wlr_renderer_init_wl_display(self.wlr_renderer, self.wl_display); // orelse // return error.CantInitWlDisplay; self.wlr_xdg_shell = c.wlr_xdg_shell_create(self.wl_display) orelse return error.CantCreateWlrXdgShell; self.wlr_layer_shell = c.wlr_layer_shell_v1_create(self.wl_display) orelse return error.CantCreateWlrLayerShell; try self.decoration_manager.init(self); try self.root.init(self); // Must be called after root is initialized try self.input_manager.init(self); try self.config.init(self.allocator); // These all free themselves when the wl_display is destroyed _ = c.wlr_compositor_create(self.wl_display, self.wlr_renderer) orelse return error.CantCreateWlrCompositor; _ = c.wlr_data_device_manager_create(self.wl_display) orelse return error.CantCreateWlrDataDeviceManager; _ = c.wlr_screencopy_manager_v1_create(self.wl_display) orelse return error.CantCreateWlrScreencopyManager; _ = c.wlr_xdg_output_manager_v1_create(self.wl_display, self.root.wlr_output_layout) orelse return error.CantCreateWlrOutputManager; // Register listeners for events on our globals self.listen_new_output.notify = handleNewOutput; c.wl_signal_add(&self.wlr_backend.events.new_output, &self.listen_new_output); self.listen_new_xdg_surface.notify = handleNewXdgSurface; c.wl_signal_add(&self.wlr_xdg_shell.events.new_surface, &self.listen_new_xdg_surface); self.listen_new_layer_surface.notify = handleNewLayerSurface; c.wl_signal_add(&self.wlr_layer_shell.events.new_surface, &self.listen_new_layer_surface); } /// Free allocated memory and clean up pub fn deinit(self: *Self) void { // Note: order is important here c.wl_display_destroy_clients(self.wl_display); c.wl_display_destroy(self.wl_display); self.input_manager.deinit(); self.root.deinit(); } /// Create the socket, set WAYLAND_DISPLAY, and start the backend pub fn start(self: Self) !void { // Add a Unix socket to the Wayland display. const socket = c.wl_display_add_socket_auto(self.wl_display) orelse return error.CantAddSocket; // Start the backend. This will enumerate outputs and inputs, become the DRM // master, etc if (!c.river_wlr_backend_start(self.wlr_backend)) { return error.CantStartBackend; } // Set the WAYLAND_DISPLAY environment variable to our socket if (c.setenv("WAYLAND_DISPLAY", socket, 1) == -1) { return error.CantSetEnv; } } /// Enter the wayland event loop and block until the compositor is exited pub fn run(self: Self) void { c.wl_display_run(self.wl_display); } fn handleNewOutput(listener: ?*c.wl_listener, data: ?*c_void) callconv(.C) void { const self = @fieldParentPtr(Self, "listen_new_output", listener.?); const wlr_output = @ptrCast(*c.wlr_output, @alignCast(@alignOf(*c.wlr_output), data)); Log.Debug.log("New output {}", .{wlr_output.name}); self.root.addOutput(wlr_output); } fn handleNewXdgSurface(listener: ?*c.wl_listener, data: ?*c_void) callconv(.C) void { // This event is raised when wlr_xdg_shell receives a new xdg surface from a // client, either a toplevel (application window) or popup. const self = @fieldParentPtr(Self, "listen_new_xdg_surface", listener.?); const wlr_xdg_surface = @ptrCast(*c.wlr_xdg_surface, @alignCast(@alignOf(*c.wlr_xdg_surface), data)); if (wlr_xdg_surface.role == .WLR_XDG_SURFACE_ROLE_POPUP) { Log.Debug.log("New xdg_popup", .{}); return; } Log.Debug.log("New xdg_toplevel", .{}); self.input_manager.default_seat.focused_output.addView(wlr_xdg_surface); } /// This event is raised when the layer_shell recieves a new surface from a client. fn handleNewLayerSurface(listener: ?*c.wl_listener, data: ?*c_void) callconv(.C) void { const self = @fieldParentPtr(Self, "listen_new_layer_surface", listener.?); const wlr_layer_surface = @ptrCast( *c.wlr_layer_surface_v1, @alignCast(@alignOf(*c.wlr_layer_surface_v1), data), ); Log.Debug.log( "New layer surface: namespace {}, layer {}, anchor {}, size {}x{}, margin ({},{},{},{}), exclusive_zone {}", .{ wlr_layer_surface.namespace, wlr_layer_surface.client_pending.layer, wlr_layer_surface.client_pending.anchor, wlr_layer_surface.client_pending.desired_width, wlr_layer_surface.client_pending.desired_height, wlr_layer_surface.client_pending.margin.top, wlr_layer_surface.client_pending.margin.right, wlr_layer_surface.client_pending.margin.bottom, wlr_layer_surface.client_pending.margin.left, wlr_layer_surface.client_pending.exclusive_zone, }, ); // If the new layer surface does not have an output assigned to it, use the // first output or close the surface if none are available. if (wlr_layer_surface.output == null) { if (self.root.outputs.first) |node| { const output = &node.data; Log.Debug.log( "New layer surface had null output, assigning it to output {}", .{output.wlr_output.name}, ); wlr_layer_surface.output = output.wlr_output; } else { Log.Error.log( "No output available for layer surface '{}'", .{wlr_layer_surface.namespace}, ); c.wlr_layer_surface_v1_close(wlr_layer_surface); return; } } const output = @ptrCast(*Output, @alignCast(@alignOf(*Output), wlr_layer_surface.output.*.data)); output.addLayerSurface(wlr_layer_surface) catch unreachable; }